On the Longest Circuit in an Alterable Digraph*

KER-I KO ${ }^{\star \star}$ and CHIH-LONG LIN ${ }^{\ddagger}$
Department of Computer Science, State University of New York at Stony Brook, Stony Brook, NY 11794, U.S.A.

(Received: 7 November 1994; accepted: 23 February 1995)

Abstract

An alterable digraph is a digraph with a subset of its edges marked alterable and their orientations left undecided. We say that an alterable digraph has an invariant of k on the length of the longest circuit if it has a circuit of length at least k regardless of the orientations over its alterable edges. Computing the maximum invariant on the length of the longest circuit in an alterable digraph is a global optimization problem. We show that it is hard to approximate the global optimal solution for the maximum invariant problem.

Key words: Alterable digraphs, global optimization, approximation, NP-hardness.

1. Introduction

We study the global optimization problems in dynamic environments modeled by alterable digraphs. An alterable digraph is a directed graph of which a subset of edges are marked alterable and have their orientations left undecided. An example of this kind of environment is the transportation system of a metropolitan area where one-way streets are dynamically directed to accommodate varying traffic requirements. Informally, an alterable digraph is a "succinct" description of a group of, potentially exponentially many, digraphs, and therefore testing whether a property Q is invariant over the group of digraphs would intuitively be more difficult than testing Q on a single digraph.

The specific problem to be studied in this paper is the Longest Circuit problem in alterable digraphs: given an alterable digraph G, find the maximum integer $l c(G)$ such that G has a simple circuit of length at least $l c(G)$, regardless of the orientations of the alterable edges of G. The longest circuit problem in undirected graphss is a well-known NP-hard problem and is closely related to the Travelling Salesman problem (TSP). Papadimitriou and Yannakakis showed in [11] that there exists a constant $c>1$ such that the problem of approximating the optimal travelling salesman tour in a complete graph with edges of length one or two is NP-hard. Karger et al. [8] used this result to show that the problem of approximating the length of the longest circuit in an undirected graph to within any constant factor $c>1$ is also NP-hard.

[^0]We study in this paper the effect of dynamic environment on the computational complexity of the longest circuit problem. Note that the value of $l c(G)$ for an alterable digraph G is required to 'remain the lower bound of the length of the longest circuit in G for all possible dynamic changes on the directions of alterable edges. This requirement corresponds to an extra level of nondeterminism, and potentially raises the complexity of the problem from NP to the second level of the polynomial-time hierarchy $(\mathrm{PH})[12,4]$ of which NP is the first level. Intuitively it is not hard to see that most dynamic optimization problems fall into this complexity category. Our main result here shows that approximating the value of $l c(G)$ is as hard as computing it exactly; specifically we show that there is a constant $c>1$ such that the problem of computing a value $l c^{\prime}(G)$ satisfying $l c(G) / c \leqslant l c^{\prime}(G) \leqslant c \cdot l c(G)$ for any alterable digraph G is complete for the second level Π_{2}^{P} of PH . As a consequence, even if we have the access to an oracle capable of solving an NP-complete problem such as the Satisfiability problem, it is still hard to approximate the value of $l c(G)$ within a constant factor.

Our work continues the recent development on the intractability of approximating many NP-hard optimization problems including the problems MAX-CLIQUE and MIN-SET-COVER [2,9], and of approximating some PSPACE-hard problems such as MAX-GEOGRAPHY [3]. These works suggest that for many intractable optimization problems, approximating the optimum solutions within a constant factor is essentially as hard as finding the exact optimum solutions. In [5, 7], this development has been extended to the second and higher levels of PH. Essentially it is shown in [5] that the approximation of MAX $-3 \mathrm{SAT}_{2}$ to within some constant factor $c>1$ is Π_{2}^{P}-hard, where MAX-3SAT ${ }_{2}$ is the following extension of the Maximum-Satisfiability problem: given a 3CNF boolean formula $F(X, Y)$ over two sets of variables X and Y, find the maximum integer k such that for any truth assignment t_{x} to X there exists a truth assignment t_{y} to Y satisfying at least k clauses of F. Similar results for other levels of PH are also shown.

For technical reasons, we introduce, in Section 3, a subproblem MAX-3SAT ${ }_{2}$-B of MAX-3SAT 2 in which the number of occurrences of each boolean variable in a 3CNF input formula is bounded by some constant. We show that the approximation to this subproblem within a constant factor is also Π_{2}^{P}-hard. Our proof is a nontrivial extension of [10] where the problem MAX-3SAT-B, a subproblem of MAX-3SAT, is shown to be hard to approximate.

Finally we point out that our reductions use a more general notion of gappreserving reduction than the linear reduction of [10]. This gap-preserving reduction is the most general type of reductions that preserve nonapproximability results and is necessary in our context. We present this notion formally in Section 2, along with the preliminary results in [5]. The main result is shown in Section 4.

2. Complexity of Approximation Problems

In this section, we review the notion of completeness in NP and Π_{2}^{P}, and define the notion of the gap-preserving reduction. We let Σ be the binary alphabet $\{0,1\}$ and Σ^{*} be the set of finite strings over Σ. For any string x in Σ^{*}, we denote by $|x|$ the length of x. Let \mathbf{Q}^{+}be the set of positive rationals and \mathbf{R}^{+}the set of positive reals. In the following, we briefly review some basic complexity classes frequently mentioned in literature. For more details, the reader is referred to any standard text, for instance [4].

A decision problem A is just a language $A \subseteq \Sigma^{*}$. The class P is the class of decision problems that are solvable by deterministic Turing Machines (TMs) in polynomial time; that is, for each $A \in \mathrm{P}$, there exists a TM M_{A} such that for any $x \in \Sigma^{*}, M_{A}$ on x halts in $p(|x|)$ steps for some polynomial $p>0$, outputs 1 if $x \in A$, and 0 otherwise. The class NP is the class of decision problems solvable by nondeterministic TMs in polynomial time. It is easy to see that $P \subseteq N P$. Whether $\mathrm{P}=\mathrm{NP}$ is a major open question in complexity theory.

A decision problem A is reducible to a decision problem B if there is a polynomial-time computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ such that for all $x \in \Sigma^{*}$, $x \in A$ if and only if $f(x) \in B$. For any complexity class \mathcal{C}, we say that the decision problem A is \mathcal{C}-hard if for any $B \in \mathcal{C}, B$ is reducible to $A ; A$ is \mathcal{C} complete if A is \mathcal{C}-hard and A is also in C. The fact of A being NP-hard means that if $A \in \mathrm{P}$ then $\mathrm{P}=\mathrm{NP}$, and so NP-hard problems are commonly considered intractable. A typical NP-complete problem is the Satisfiability problem (SAT) of deciding whether a given boolean formula is satisfiable. A corresponding optimization problem MAX-3SAT of finding the maximum number of satisfiable clauses in a given 3CNF boolean formula is known to be NP-hard. [4] contains hundreds of NP-complete problems.

Let $\langle x, y\rangle$ be any pairing function mapping strings x and y to a single string in polynomial time. A well-known characterization of the class NP is as follows: $A \in \mathrm{NP}$ if and only if there exists some $B \in \mathrm{P}$ such that for all $x \in \Sigma^{*}$,

$$
x \in A \Leftrightarrow(\exists y,|y| \leqslant p(|x|))[\langle x, y\rangle \in B]
$$

where $p(n)$ is some polynomial depending only on A. The complexity class Π_{2}^{P} is a natural extension of the class NP. We say that $A \in \Pi_{2}^{P}$ if there exists some $B \in \mathrm{P}$ such that

$$
x \in A \Leftrightarrow(\forall y,|y| \leqslant p(|x|))(\exists z,|z| \leqslant p(|x|))[\langle x,\langle y, z\rangle\rangle \in B] .
$$

It is obvious that NP $\subseteq \Pi_{2}^{P}$, and whether the inclusion is proper is also a major open question. A typical Π_{2}^{P}-complete problem, SAT_{2}, is that of deciding whether a given quantified boolean formula $\left(\forall x_{1}\right) \ldots\left(\forall x_{r}\right)\left(\exists y_{1}\right) \ldots\left(\exists y_{s}\right) \psi$ is true, where ψ is a quantifier free boolean formula over variables x_{i} 's and y_{j} 's. [6] contains more Π_{2}^{P}-complete problems.

We now formalize the notion of approximating function evaluation problem and its relation to the complexity of decision problems.

DEFINITION 1. Let $f, g: \Sigma^{*} \rightarrow \mathbf{Q}^{+}$and $c: \mathbf{N} \rightarrow \mathbf{R}^{+}, c(n)>1$ for all n, be given. We say that g approximates f to within a factor of c (c-approximates f in short) if for all $x \in \Sigma^{*}$, we have $f(x) / c(|x|)<g(x)<c(|x|) \cdot f(x)$. The c-approximation problem of f is to compute a function g that c-approximates f.

DEFINITION 2. Let $A, B \subseteq \Sigma^{*}, A \cap B=\emptyset$, and \mathcal{C} be a decision problem class. We say $\langle A, B\rangle \in \mathcal{C} \times$ co- \mathcal{C} if $A \in \mathcal{C}$ and $\bar{B} \in C$. Given two pairs $\langle A, B\rangle$ and $\left\langle A^{\prime}, B^{\prime}\right\rangle$ in $\mathcal{C} \times$ co- \mathcal{C}, we say that $\langle A, B\rangle$ is G-reducible to $\left\langle A^{\prime}, B^{\prime}\right\rangle$ if there is a polynomial-time computable function f such that $f(A) \subseteq A^{\prime}$ and $f(B) \subseteq B^{\prime}$. We say that $\langle A, B\rangle$ is \mathcal{C}-hard if there exists a set C that is \mathcal{C}-hard and $\langle C, \bar{C}\rangle$ is G-reducible to $\langle A, B\rangle$.

The following definition relates the hardness of approximating function values to that of pairs of decision problems.

DEFINITION 3. Let $f: \Sigma^{*} \rightarrow \mathbf{Q}^{+}$be a given function and $c: \mathbf{N} \rightarrow \mathbf{Q}^{+}$, $c(n)>1$. We say that the c-approximation problem of f is \mathcal{C}-hard if there exist $s, l: N \rightarrow \mathbf{Q}^{+}, s(n)<l(n)$, such that

1. for all $n, c(n) s(n)<l(n) / c(n)$; and
2. $\langle\{x \mid f(x) \geqslant l(|x|)\},\{x \mid f(x) \leqslant s(|x|)\}\rangle$ is \mathcal{C}-hard.

Given $s(n)<l(n)$, for the sake of simplicity, we shall write $\langle f: l, s\rangle$ for the pair of sets $\langle\{x \mid f(x) \geqslant l(|x|)\},\{x \mid f(x) \leqslant s(|x|)\}\rangle$; further, we shall write only the constants for corresponding constant functions, e.g., 1 for $l(n)=1$. The following proposition can be easily verified.

PROPOSITION 4. Let $s<l$. If $\langle f: l, s\rangle$ is \mathcal{C}-hard and $\mathcal{C} \neq \mathrm{P}$, then the $(l / s)^{1 / 2}$ approximation problem of f is not polynomial-time computable.

Boolean formulae will be very much involved in our reductions. Let u be a boolean variable; by a literal on u we mean u itself or its negation $\neg u$. For any boolean formula $F(U)$ over a set U of boolean variables, we say that $F(U)$ is in 3conjunctive normal form (3CNF) if it is a conjunction of clauses and each clause is a disjunction of three literals over U. We say that variable u occurs in a clause C if C contains either u or $\neg u$ as one of its disjunct. A truth assignment t to a set of variable U is just a subset of U; for any $u \in U$, we say that t sets u to true (or false), written as $t(u)=1$ (or, respectively $t(u)=0$), if $u \in t$ (or, respectively, $u \notin t$). We let 2^{U} denote the set of truth assignments to U. For any $t \in 2^{U}$, we let $\#[F(t)]$ (and $\operatorname{Pr}[F(t)]$) denote the number (and, respectively, fraction) of satisfied clauses of F by t; for example, if $F(U)=\left(u_{1} \vee u_{2} \vee u_{3}\right) \wedge\left(\neg u_{1} \vee \neg u_{2} \vee \neg u_{3}\right)$ and $t=\emptyset$, then $\#[F(t)]=1$ (and, respectively, $\operatorname{Pr}[F(t)]=1 / 2$). Often the set U of variables is partitioned into disjoint sets, say X and Y, each dealt with differently; we then extend the above notations to, respectively, $F(X, Y), \#\left[F\left(t_{x}, t_{y}\right)\right]$, and $\operatorname{Pr}\left[F\left(t_{x}, t_{y}\right)\right]$ for $t_{x} \in 2^{X}$ and $t_{y} \in 2^{Y}$. We call a variable in X an X-variable, and
analogously call a literal defined on X an X-literal; Y-variables and Y-literals are defined similarly.

Our basis of reduction is the following standard Π_{2}^{P}-hard problem. It is proved in [5] that the corresponding approximation problem is also Π_{2}^{P}-hard.

MAX-3SAT ${ }_{2}$

Input: A 3CNF boolean formula $F(X, Y)$ over two sets of variables X and Y.
Output: $f_{\text {MAX- }^{2} \operatorname{SAT}_{2}}(F)=\min _{t_{x} \in 2^{x}} \max _{t_{y} \in 2^{Y}} \operatorname{Pr}\left[F\left(t_{x}, t_{y}\right)\right]$.
PROPOSITION 5. [5]. $\left\langle f_{\mathrm{MAX}-3 \mathrm{SAT}_{2}}: 1,1-\varepsilon\right\rangle$ is Π_{2}^{P}-hard for some constant $0<\varepsilon<1$.

In Section 3, we consider a subproblem MAX-3SAT 2 -B of MAX-3SAT ${ }_{2}$. Inputs to both problems are the same except that for MAX-3SAT ${ }_{2}-\mathrm{B}$ the number of occurrences for each variable is bounded by some fixed constant b. The subscript " 2 " is intended as a reminder of the two levels of optimization (min and max) involved in the definition above. Without the subscript, that is, MAX-3SAT and MAX-3SATB , we mean the versions of MAX-3SAT 2 and MAX-3SAT 2 - ${ }^{\text {B respectively with }}$ the restriction of $X=\emptyset$.

3. A Subproblem of Maximum Satisfiability y_{2}

In this section we prove our main technical theorem, that is, MAX-3SAT $2-B$ is hard to approximate. The main theorem will be proved in two stages: given a 3 CNF boolean formula $F(X, Y)$ for the MAX- $3 \mathrm{SAT}_{2}$ problem, we in the first stage consider instances having a constant bound on the number of occurrences for X-variables and then, in the second stage, consider those having a constant bound on the number of occurrences for both X - and Y-variables.

Papadimitriou and Yannakakis [10] used the fact that there exist polynomialtime constructible expanders of bounded degrees to show that MAX-3SAT is reducible to MAX-3SAT-B. In the first part of the proof, we will need an extended property of expanders. We first review the notion of the expanders. For any connected graph $G=(V, E)$ and any $u, v \in V$, let $\operatorname{dist}_{G}(u, v)$ be the number of edges in a shortest path from u to v; for convenience, we let $\operatorname{dist}_{G}(u, u)=0$. Further, for any $S \subseteq V$, let $\operatorname{dist}_{G}(u, S)=\min \left\{\operatorname{dist}_{G}(u, v) \mid v \in S\right\}$.

DEFINITION 6. Let c be a constant with $0<c<1$. We call a graph $G=(V, E)$ a c-expander if for any subset S of V having at most $|V| / 2$ vertices, $\mid\{u \in$ $\left.V \mid \operatorname{dist}_{G}(u, S)=1\right\}|\geqslant c| S \mid$.

We say a graph is of degree k if every vertex in G is of degree k.
LEMMA 7. [1]. There exist a constant $c, 0<c<1$, and an algorithm that, on input n, constructs a c-expander of size n and degree three in time polynomial in n.

From the definition, we know that if G is a c-expander then for any subset $S \subseteq V$, with $|S| \leqslant|V| / 2$, there exist sufficiently many vertices outside of S that are adjacent to some vertices inside S. The following lemma shows that G can be so augmented that a constant fraction of vertices inside of S are adjacent to some vertices outside of S.

LEMMA 8. Let $0<\delta<1$ be any constant. Then for any n there exists a polynomial time constructible graph $\mathcal{G}[n, \delta]=(V, E)$ satisfying the following properties: (a) $|V|=n$, (b) $\mathcal{G}[n, \delta]$ is of degree b, where b is a constant depending only on δ, and (c) for any $S \subseteq V,|S| \leqslant n / 2$,

$$
\left|\left\{u \in S \mid \operatorname{dist}_{\mathcal{G}[n, \delta]}(u, V-S)=1\right\}\right|>(1-\delta)|S|
$$

Proof. Let $G^{\prime}=\left(V, E^{\prime}\right)$ be a c-expander of size n constructed in Lemma 7. Let d be the least integer such that $(1-c / 3)^{d}<\delta$. Then we claim that $G=(V, E)$ with $E=\left\{\langle u, v\rangle \mid \operatorname{dist}_{G^{\prime}}(u, v) \leqslant d\right\}$ has the properties (a), (b) and (c). First, for property (b), we note that the degree of G is bounded by $b=3^{d+1}$. Second, for property (c), we let $S \subseteq V,|S| \leqslant n / 2$, and for each $i \geqslant 0$, define $S_{i}=\left\{u \in S \mid \operatorname{dist}_{G^{\prime}}(u, V-S)>i\right\}$. We argue that $\left|S_{i+1}\right| \leqslant(1-c / 3)\left|S_{i}\right|$. To see this, we observe that (1) by the definition, at least $c\left|S_{i}\right|$ vertices v of $V-S_{i}$ satisfy that $\operatorname{dist}_{G^{\prime}}\left(v, S_{i}\right)=1$, and (2) at most three of them can be adjacent to a common vertex in S_{i}, since G^{\prime} has degree 3. Therefore, at most $(1-c / 3)\left|S_{i}\right|$ vertices v of S_{i} satisfy that $\operatorname{dist}_{G^{\prime}}\left(v, V-S_{i}\right) \geqslant 2$, or equivalently, $\operatorname{dist}_{G^{\prime}}(v, V-S)>i+1$. This shows that $\left|S_{i+1}\right| \leqslant(1-c / 3)\left|S_{i}\right|$ for each $i \geqslant 0$. Unwrap the recursion and we obtain $\left|S_{i}\right| \leqslant|S|(1-c / 3)^{i}$. Finally setting i to d satisfies property (c), and hence the claim.

Now we are ready to prove the main result of this section. Let MAX-3SAT $-X B$ be the version of MAX-3SAT $2-\mathrm{B}$ without restricting the number of occurrences for each Y-variable; let $f_{\mathrm{MAX}-3 \mathrm{SAT}_{2} \text {-XB }}$ be the correspondingly defined function.

LEMMA 9. $\left\langle f_{\mathrm{MAX}^{2} \mathrm{SAT}_{2}-\mathrm{XB}}: 1-\varepsilon_{1}^{\prime}, 1-\varepsilon_{2}^{\prime}\right\rangle$ is Π_{2}^{P}-hard for some constants $0<$ $\varepsilon_{1}^{\prime}<\varepsilon_{2}^{\prime}<1$.

Proof. By Proposition $5,\left\langle f_{\text {MAX-3SAT }_{2}}: 1,1-\varepsilon\right\rangle$ is Π_{2}^{P}-hard for some constant $0<\varepsilon<1$. We prove that $\left\langle f_{\mathrm{MAX}-3 \mathrm{SAT}_{2}}: 1,1-\varepsilon\right\rangle$ is G-reducible to $\left\langle f_{\mathrm{MAX}-3 \mathrm{SAT}_{2}-\mathrm{XB}}\right.$: $\left.1-\varepsilon_{1}^{\prime}, 1-\varepsilon_{2}^{\prime}\right\rangle$ for some constants $0<\varepsilon_{1}^{\prime}<\varepsilon_{2}^{\prime}<1$; the actual values of ε_{1}^{\prime} and ε_{2}^{\prime} will be chosen later.

Let $F(X, Y)$ be a 3CNF boolean formula over two sets of variables X and Y. Assume that F has n clauses C_{1}, \ldots, C_{n}. Without loss of generality, we assume that no clause of F contains both v and its complement $\neg v$ for any variable $v \in X \cup Y$. We first construct a new boolean formula $F^{\prime}\left(X^{\prime}, Y^{\prime}\right)$ from $F(X, Y)$; we note that it will only be in CNF, not in 3CNF as required. Converting $F^{\prime}\left(X^{\prime}, Y^{\prime}\right)$ to an equivalent 3 CNF formula is a routine task and is deferred till the end of the proof.

Construction. Assume that $X=\left\{x_{1}, \ldots, x_{r}\right\}$. For each $j, 1 \leqslant j \leqslant r$, let $d(j)$ be the number of clauses of $F(X, Y)$ that contain either x_{j} or $\neg x_{j}$, and let $C_{i_{1}}, C_{i_{2}}, \ldots, C_{i_{d(j)}}$ be those clauses. Then, we define $2 d(j)$ new variables and group them as $X_{j}=\left\{x_{j}^{i_{1}}, \ldots, x_{j}^{i_{d(j)}}\right\}$ and $U_{j}=\left\{u_{j}^{i_{1}}, \ldots, u_{j}^{i_{d(j)}}\right\}$; variables in X_{j} are called the occurrence variables of x_{j}. The two sets of variables in F^{\prime} are $X^{\prime}=X_{1} \cup \cdots \cup X_{r}$ and $Y^{\prime}=Y \cup U_{1} \cup \cdots \cup U_{r}$.

For each $j, 1 \leqslant j \leqslant r$, define a graph $G_{j}=\mathcal{G}[d(j), \varepsilon / 3]$ and match arbitrarily $x_{j}^{i_{1}}, \ldots, x_{j}^{i_{d(j)}}$ with the $d(j)$ vertices of G_{j}. We say that two occurrence variables x_{j}^{i} and $x_{j}^{i^{\prime}}$ are adjacent if their corresponding vertices in G_{j} are adjacent. The clauses of F^{\prime} are divided into the following two groups:
(1) Major clause C_{i}^{\prime}, for each $1 \leqslant i \leqslant n$: Each C_{i}^{\prime} is obtained from C_{i} as follows: if x_{j} appears in C_{i}, then replace the occurrence of x_{j} by x_{j}^{i} and add an extra literal u_{j}^{i}. For example, let $C_{i}=\left(x_{1} \vee \neg x_{2} \vee y_{3}\right)$ and $C_{j}=\left(\neg x_{1} \vee x_{2} \vee y_{3}\right)$ be two clauses of $F(X, Y)$. Then $C_{i}^{\prime}=\left(x_{1}^{i} \vee u_{1}^{i} \vee \neg x_{2}^{i} \vee u_{2}^{i} \vee y_{3}\right)$ and $C_{j}^{\prime}=\left(\neg x_{1}^{j} \vee u_{1}^{j} \vee x_{2}^{j} \vee u_{2}^{j} \vee y_{3}\right)$. Note that Y-variables are not affected, and if C_{i} contains no X-variables, then $C_{i}^{\prime}=C_{i}$.
(2) Discrepancy-test clause D_{j}^{i}, for each occurrence variable x_{j}^{i} : Assume that $x_{j}^{i_{1}^{\prime}}, x_{j}^{i_{2}^{\prime}}, \ldots, x_{j}^{i_{b}^{\prime}}$ are the b occurrence variables of x_{j} adjacent to x_{j}^{i}. Then, let $D_{j}^{i}=\left(\neg u_{j}^{i} \vee x_{j}^{i} \vee x_{j}^{i_{1}^{\prime}} \vee x_{j}^{i_{2}^{\prime}} \vee \ldots \vee x_{j}^{i_{b}^{\prime}}\right)$ if C_{i}^{\prime} contains literal x_{j}^{i}, and let $D_{j}^{i}=$ $\left(\neg u_{j}^{i} \vee \neg x_{j}^{i} \vee \neg x_{j}^{i_{1}^{\prime}} \vee \neg x_{j}^{i_{2}^{\prime}} \vee \ldots \vee \neg x_{j}^{i_{b}^{\prime}}\right)$ if C_{i}^{\prime} contains literal $\neg x_{j}^{i}$. Thus for the above example, the discrepancy-test clause D_{1}^{i} will be of the first form, and D_{2}^{i} of the second form.

We note that these clauses are set up to have the following properties: First, if the truth value assigned to x_{j}^{i} is inconsistent with that to any of its neighbours in G_{j}, then the discrepancy-test D_{j}^{i} corresponding to x_{j}^{i} will be satisfied, regardless of the truth value of u_{j}^{i}. Thus, u_{j}^{i} can be set to true and the major clause C_{i}^{\prime} is satisfied regardless of the truth values assigned to other liberals in C_{i}^{\prime}. On the other hand, if the truth values assigned to x_{j}^{i} and any of its adjacent variables are consistent, then u_{j}^{i} has to be set to false to satisfy the discrepancy-test clause D_{j}^{i}, and thus has no effect on satisfying C_{i}^{\prime}.

The above completes the construction of $F^{\prime}\left(X^{\prime}, Y^{\prime}\right)$. It can be seen that F^{\prime} has the following properties: each X-variable occurs only a constant number of times (say, two times the degree of $\mathcal{G}[m, \varepsilon / 3]$, which depends only on ε), each clause contains only $O(1)$ literals, and there are n major and at most $3 n$ discrepancy-test clauses in F^{\prime}, since there are $\sum_{j=1}^{r} d(j) \leqslant 3 n$ occurrence variables. By adding dummy clauses, we can assume that F^{\prime} has exactly $3 n$ discrepancy-test clauses.

Correctness. To see that the reduction is indeed a G-reduction, we first exhibit an error-confinement property of the reduction; namely, for any $t_{x} \in 2^{X^{\prime}}$ and
$t_{y} \in 2^{Y}$, we can always find $t_{u} \in 2^{U}$ such that

$$
\begin{align*}
\#\left[F^{\prime}\left(t_{x}, t_{y} \cup t_{u}\right)\right] & =\max _{s \in 2^{U}} \#\left[F^{\prime}\left(t_{x}, t_{y} \cup s\right)\right], \quad \text { and } \\
\#\left[D_{j}^{i}\left(t_{x}, t_{u}\right)\right] & =1 \text { for all discrepancy-test clause } D_{j}^{i} \tag{1}
\end{align*}
$$

To see this, let $s_{1} \in 2^{U}$ be such that $\#\left[F^{\prime}\left(t_{x}, t_{y} \cup s_{1}\right)\right]=\max _{s \in 2^{U}} \#\left[F^{\prime}\left(t_{x}, t_{y} \cup s\right)\right]$ but $\#\left[D_{j}^{i}\left(t_{x}, s_{1}\right)\right]=0$ for some discrepancy-test clause D_{j}^{i}. Since D_{j}^{i} is either of the form $\left(\neg u_{j}^{i} \vee x_{j}^{i} \vee \cdots\right)$ or $\left(\neg u_{j}^{i} \vee \neg x_{j}^{i} \vee \cdots\right)$, we must have $s_{1}\left(u_{j}^{i}\right)=1$. Now define $s_{2} \in 2^{U}$ by $s_{2}(u)=s_{1}(u)$ for all $u \in U-\left\{u_{j}^{i}\right\}$, and let $s_{2}\left(u_{j}^{i}\right)=0$. We claim that $\#\left[F^{\prime}\left(t_{x}, t_{y} \cup s_{2}\right)\right] \geqslant \#\left[F^{\prime}\left(t_{x}, t_{y} \cup s_{1}\right)\right]$. To justify, first we note that variable u_{j}^{i} only occurs in C_{i}^{\prime} and D_{j}^{i}, and D_{j}^{i} contains no Y-variables. Let $\Delta_{1}=\#\left[C_{i}^{\prime}\left(t_{x}, t_{y} \cup s_{2}\right)\right]-\#\left[C_{i}^{\prime}\left(t_{x}, t_{y} \cup s_{1}\right)\right]$ and $\Delta_{2}=\#\left[D_{j}^{i}\left(t_{x}, s_{2}\right)-\#\left[D_{j}^{i}\left(t_{x}, s_{2}\right)\right]\right.$. It is clear that $\#\left[F^{\prime}\left(t_{x}, t_{y} \cup s_{2}\right)\right]-\#\left[F^{\prime}\left(t_{x}, t_{y} \cup s_{1}\right)\right]=\Delta_{1}+\Delta_{2}$. Since $\Delta_{2}=1$ and $\Delta_{1} \geqslant-1$, the claim follows. We have just shown how to reduce by one the number of unsatisfied discrepancy-test clause without decreasing the total number of satisfied clauses in F^{\prime}. Repeat this process and we can find a $t_{u} \in 2^{U}$ satisfying the error-confinement property.

REMARK 10. We summarize the following properties of the formula $F^{\prime}\left(X^{\prime}, Y \cup\right.$ $U)$:
(1) $F^{\prime}\left(X^{\prime}, Y \cup U\right)$ consists of the major clauses and the discrepancy-test clauses.
(2) Each X^{\prime} - and U-literal occurs at most once in the major clauses and at most some constant number of times in the discrepancy-test clauses.
(3) Each Y-literal occurs only in the major clauses, and the number of its occurrences in F^{\prime} is the same as that in F.
(4) For any $t_{x} \in 2^{X^{\prime}}$, there exist $t_{y} \in 2^{Y}$ and $t_{u} \in 2^{U}$ such that the two equalities in equation (1) holds for F^{\prime}. (In other words, we can have all the errors, i.e., unsatisfied clauses, occur only in the major clauses.)

Let $m=\min _{s_{x} \in 2^{X}} \max _{s_{y} \in 2^{Y}} \#\left[F\left(s_{x}, s_{y}\right)\right]$ and $m^{\prime}=\min _{s_{x}^{\prime} \in 2^{X^{\prime}}} \max _{s_{y} \in 2^{Y}}$ $s_{u} \in 2^{U}$ $\#\left[F\left(s_{x}^{\prime}, s_{y} \cup s_{u}\right)\right]$. We claim that

$$
\begin{align*}
& m^{\prime} \geqslant 3 n+m-\varepsilon n / 2, \quad \text { and } \tag{2}\\
& m^{\prime} \leqslant 3 n+m \tag{3}
\end{align*}
$$

First, we prove inequality (2). Consider any $t \in 2^{X^{\prime}}$. Let $P\left(x_{j}\right)=\{x \in$ $\left.X_{j} \mid t(x)=1\right\}$ and $N\left(x_{j}\right)=\left\{x \in X_{j} \mid t(x)=0\right\}$. Define $t_{x} \in 2^{X}$ as follows: for any $1 \leqslant j \leqslant r$,

$$
t_{x}\left(x_{j}\right)= \begin{cases}1 & \text { if }\left|P\left(x_{j}\right)\right| \geqslant\left|N\left(x_{j}\right)\right|, \text { and } \\ 0 & \text { otherwise. }\end{cases}
$$

By the definition of m, there must exist a $t_{y} \in 2^{Y}$ such that $\#\left[F\left(t_{x}, t_{y}\right)\right] \geqslant m$. By (1), we can always find a $t_{u} \in 2^{U}$ such that $\#\left[F^{\prime}\left(t, t_{y} \cup t_{u}\right)\right]=\max _{s \in 2^{U}} \#\left[F^{\prime}\left(t, t_{y} \cup\right.\right.$ $s)$] and that all $3 n$ discrepancy-test clauses are satisfied by t and t_{u}; that is, by t, t_{y} and t_{u}, all unsatisfied clauses are confined to among major clauses. Let $\Delta_{i}=\#\left[C_{i}\left(t_{x}, t_{y}\right)\right]-\#\left[C_{i}^{\prime}\left(t, t_{y} \cup t_{u}\right)\right]$. It is then clear that $\#\left[F^{\prime}\left(t, t_{y} \cup t_{u}\right)\right] \geqslant$ $3 n+m-\sum_{i=1}^{n} \Delta_{i}$. We will show that $\sum_{i=1}^{n} \Delta_{i} \leqslant \varepsilon n / 2$ and inequality (2) follows.

Let us call an occurrence variable x_{j}^{i} consistent if $t\left(x_{j}^{i}\right)=t_{x}\left(x_{j}\right)$, and call x_{j}^{i} frontal if $t\left(x_{j}^{i}\right) \neq t\left(x_{j}^{i^{\prime}}\right)$ for some $x_{j}^{i^{\prime}}$ adjacent to x_{j}^{i}. If C_{i}^{\prime} contains a frontal occurrence variable x_{j}^{i}, then D_{j}^{i}, either of the form $\left(\neg u_{j}^{i} \vee x_{j}^{i} \vee x_{j}^{i_{1}^{\prime}} \vee x_{j}^{i_{2}^{\prime}} \vee \cdots \vee x_{j}^{i_{b}^{\prime}}\right)$ or $\left(\neg u_{j}^{i} \vee \neg x_{j}^{i} \vee \neg x_{j}^{i_{1}^{\prime}} \vee \neg x_{j}^{i_{2}^{\prime}} \vee \cdots \vee \neg x_{j}^{i_{b}^{\prime}}\right)$, is always satisfied by t, regardless of the truth value set to u_{j}^{i}; choose $t_{u}\left(u_{j}^{i}\right)=1$ and then $C_{i}^{\prime}=\left(\cdots \vee u_{j}^{i} \vee \cdots\right)$ is satisfied, leading us to $\Delta_{i} \leqslant 0$. If all occurrence variables x_{j}^{i} of C_{i}^{\prime} are consistent, then it is clear that $\Delta_{i} \leqslant 0$ also. Therefore, $\Delta_{i}>0$ only if C_{i}^{\prime} contains an inconsistent, non-frontal occurrence variable. The number of such major clauses, as we will argue below, is at most $\varepsilon n / 2$.

Let S_{j} be the set of major clauses containing some occurrence variable x_{j}^{i} of X_{j}. By Lemma 8, at most

$$
(\varepsilon / 3) \min \left\{\left|P\left(x_{j}\right)\right|,\left|N\left(x_{j}\right)\right|\right\} \leqslant(\varepsilon / 6)\left|S_{j}\right|
$$

clauses in S_{j} may contain inconsistent, non-frontal occurrence variable in X_{j}. In total, there are at most $\sum_{j=1}^{r}(\varepsilon / 6)\left|S_{j}\right|=(\varepsilon / 6) \sum_{j=1}^{r}\left|S_{j}\right|$ non-frontal occurrence variables. Since each major clause C_{i}^{\prime} contains at most three X^{\prime}-variables, we must have $\left|\left\{j \mid C_{i}^{\prime} \in S_{j}\right\}\right| \leqslant 3$ for each $i, 1 \leqslant i \leqslant n$. Therefore

$$
\sum_{j=1}^{r}\left|S_{j}\right|=\sum_{i=1}^{n}\left|\left\{j \mid C_{i}^{\prime} \in S_{j}\right\}\right| \leqslant 3 n
$$

It follows that the number of major clauses containing inconsistent, non-frontal occurrence variables is at most $\varepsilon n / 2$. Therefore, we have $\sum_{i=1}^{n} \Delta_{i} \leqslant \varepsilon n / 2$, and inequality (2) follows.

Next, we show inequality (3). Let t_{x} witness that $m=\max _{s_{y}} \#\left[F\left(t_{x}, s_{y}\right)\right]$. Then define $t \in 2^{X^{\prime}}$ by $t\left(x_{j}^{i}\right)=t_{x}\left(x_{j}\right)$ for all $1 \leqslant j \leqslant r$ and all occurrence variables x_{j}^{i} 's of x_{j}. Let $t_{y} \in 2^{Y}$ and $t_{u} \in 2^{U}$ be such that

$$
\#\left[F^{\prime}\left(t, t_{y} \cup t_{u}\right)\right]=\max _{\substack{s_{y} \in 2^{Y} \\ s_{u} \in 2^{U}}} \#\left[F^{\prime}\left(\dot{t}, s_{y} \cup s_{u}\right)\right]
$$

By (1), we can assume that t_{u} is so chosen that all $3 n$ discrepancy-test clauses are satisfied by t and t_{u}. Let $\Delta_{i}=\#\left[C_{i}\left(t_{x}, t_{y}\right)\right]-\#\left[C_{i}^{\prime}\left(t, t_{y} \cup t_{u}\right)\right]$, and we have $\#\left[F^{\prime}\left(t, t_{y} \cup t_{u}\right)\right]=3 n+m-\sum_{i=1}^{n} \Delta_{i}$. We claim that $\Delta_{i} \geqslant 0$ for all $1 \leqslant i \leqslant n$, from which inequality (3) follows.

Suppose otherwise and let $\Delta_{i}<0$ for some $1 \leqslant i \leqslant n$. Then $\#\left[C_{i}\left(t_{x}, t_{y}\right)\right]=0$ and $\#\left[C_{i}^{\prime}\left(t, t_{y} \cup t_{u}\right)\right]=1$, and $t_{u}\left(u_{j}^{i}\right)=1$ for some j such that either x_{j}^{i} or $\neg x_{j}^{i}$ occurs in C_{i}^{\prime}. We consider only the former case; the argument for the latter is similar. Let $C_{i}^{\prime}=\left(x_{j}^{i} \vee \cdots\right)$ and $D_{j}^{i}=\left(\neg u_{j}^{i} \vee x_{j}^{i} \vee \cdots\right)$; since $\#\left[C_{i}\left(t_{x}, t_{y}\right)\right]=0$, we have $t_{x}\left(x_{j}\right)=t\left(x_{j}^{i}\right)=0$. Since t is consistent, all occurrence variables of x_{j} are set to 0 and hence D_{j}^{i} is reduced to a single literal $\neg u_{j}^{i}$. But then $t_{u}\left(u_{j}^{i}\right)=1$ and therefore $\#\left[D_{j}^{i}\left(t, t_{u}\right)\right]=0$, contradicting equation (1).

Finally we transform F^{\prime} to a 3CNF formula $F^{\prime \prime}$. To do this, we observe that there is a mapping that transforms a clause of B literals into a set of $O(B)$ 3-literal clauses with $O(B)$ additional variables. Further, if the original clause is satisfiable, so are the derived set of 3-literal clauses as a whole; if the original is not satisfiable, all but one of the new clauses are simultaneously satisfiable (see [4] for the NPcompleteness of 3SAT). Since the clauses of F^{\prime} are of bounded length, after the transformation, F^{\prime} still has at most $k n$ 3-literal clauses for some constant $k>4$. By adding dummy clauses, we may assume that $F^{\prime \prime}$ has exactly kn 3-literal clauses for some constant k.

REMARK 11. We note that the properties mentioned in Remark 10 of F^{\prime} are preserved by this transformation. That is, if we keep the name "major clauses" ("discrepancy-test clauses") for clauses in $F^{\prime \prime}$ that are generated from a major clause (a discrepancy-test clause, respectively) in F^{\prime}, then properties (1), (2) and (3) still hold for $F^{\prime \prime}$. In addition, let Z be the set of new variables introduced by this transformation. Then we can rephrase properties (2) and (4) as follows:
(2') Each X^{\prime}-, U - and Z-literal occurs at most once in the major clauses and at most some constant number of times in the discrepancy-test clauses.
(4') For any $t_{x} \in 2^{X^{\prime}}$, there exist $t_{y} \in 2^{Y}$ and $t_{u} \in 2^{U \cup Z}$ such that equation (1) holds for $F^{\prime \prime}$.

Let $m^{\prime \prime}=\min _{s_{x}} \max _{s_{y}} \#\left[F^{\prime \prime}\left(s_{x}, s_{y}\right)\right]$. From inequalities (2) and (3), we have
(a) if $m=n$, then $m^{\prime} \geqslant 4 n-\varepsilon n / 2$, and so $m^{\prime \prime} \geqslant k n-\varepsilon n / 2=(1-\varepsilon / 2 k) k n$, and
(b) if $m \leqslant(1-\varepsilon) n$, then $m^{\prime} \leqslant 4 n-\varepsilon n$ and $m^{\prime \prime} \leqslant k n-\varepsilon n=(1-\varepsilon / k) k n$.

Therefore set $\varepsilon_{1}^{\prime}=\varepsilon / 2 k$ and $\varepsilon_{2}^{\prime}=\varepsilon / k$ and the theorem is proven.
With Lemma 9 proven, we can now apply the idea of the reduction of [10] to show that $\mathrm{MAX}-3 \mathrm{SAT}_{2}-\mathrm{B}$ is hard to approximate. Their reduction, called the linear reduction or simply the L-reduction, is a restricted version of the G-reduction. More precisely, they proved that there exist a polynomial-time computable function f and a constant $\alpha>1$ such that
(i) for each instance $H(U)$ of MAX-3SAT with m clauses, $f(H(U))=H^{\prime}\left(U^{\prime}\right)$ is a 3CNF boolean formula with $(\alpha+1) m$ clauses such that each variable in U^{\prime} occurs at most a constant number of times, and
(ii) $\max _{t^{\prime} \in 2^{U^{\prime}}} \#\left[H^{\prime}\left(t^{\prime}\right)\right]=\alpha m+\max _{t \in 2^{U}} \#[H(t)]$.

THEOREM 12. $\left\langle f_{\text {MAX-3SAT }_{2}-\mathrm{B}}: 1-\varepsilon_{1}, 1-\varepsilon_{2}\right\rangle$ is Π_{2}^{P}-hard for some constants $0<\varepsilon_{1}<\varepsilon_{2}<1$.

Proof. We prove that $\left\langle f_{\mathrm{MAX}-3 \mathrm{SAT}_{2}-\mathrm{XB}}: 1-\varepsilon_{1}^{\prime}, 1-\varepsilon_{2}^{\prime}\right\rangle$ is G-reducible to $\left\langle f_{\mathrm{MAX}^{3 S A T}}\right.$-B $\left.: 1-\varepsilon_{1}, 1-\varepsilon_{2}\right\rangle$ for some ε_{1} and ε_{2} to be chosen later.

Let $F(X, Y)$ be a 3 CNF boolean formula over two sets of variables X and Y. Assume that F has n clauses and that the number of occurrences of each X-variable is bounded by some constant. Recall that $f_{\mathrm{MAX}^{2}-3 \mathrm{SAT}_{2}}(F)=$ $\min _{s_{x}} \max _{s_{y}} \#\left[F\left(s_{x}, s_{y}\right)\right]$. Let f and α be the function and the constant satisfying properties (i) and (ii) above. Define $h(F(X, Y))=f(F(X, Y))$, treating X-variables as constants. Assume that $h(F(X, Y))=F^{\prime}\left(X, Y^{\prime}\right)$. It is then clear that

$$
\begin{aligned}
\min _{s_{x} \in 2^{X}} \max _{s_{y}^{\prime} \in 2^{Y^{\prime}}} \#\left[F^{\prime}\left(s_{x}, s_{y}^{\prime}\right)\right] & =\min _{s_{x} \in 2^{X}}\left\{\alpha n+\max _{s_{y} \in 2^{Y}} \#\left[F\left(s_{x}, s_{y}\right)\right]\right\} \\
& =\alpha n+\min _{s_{x} \in 2^{X}} \max _{s_{y} \in 2^{Y}} \#\left[F\left(s_{x}, s_{y}\right)\right]
\end{aligned}
$$

Now choose $\varepsilon_{1}=\varepsilon_{1}^{\prime} /(\alpha+1)$ and $\varepsilon_{2}=\varepsilon_{2}^{\prime} /(\alpha+1)$ and we can see that
(a) if $f_{\mathrm{MAX}^{-3 S_{2}}-\mathrm{XB}}(F) \geqslant\left(1-\varepsilon_{1}^{\prime}\right) n$ then $f_{\mathrm{MAX}^{2}-\mathrm{SAT}_{2}-\mathrm{B}}(h(F)) \geqslant\left(\alpha+1-\varepsilon_{1}^{\prime}\right) n=$ $\left(1-\varepsilon_{1}\right)(\alpha+1) n$, and
(b) if $f_{\mathrm{MAX}^{2}-3 \mathrm{SAT}_{2}-\mathrm{XB}}(F) \leqslant\left(1-\varepsilon_{2}^{\prime}\right) n$ then $f_{\mathrm{MAX}^{2} \mathrm{SSAT}_{2}-\mathrm{B}}(h(F)) \leqslant\left(\alpha+1-\varepsilon_{2}^{\prime}\right) n=$ $\left(1-\varepsilon_{2}\right)(\alpha+1) n$.
Note that $h(F)$ has $(\alpha+1) n$ clauses and this completes the proof.
REMARK 13. The proof of Theorem 12 preserves a similar error-confinement property to (4) of Remark 11: Assume that $F(X, Y)$ is a 3 CNF formula satisfying properties (1), (2'), (3), and (4^{\prime}) (here, U and Z variables are considered as part of Y). Then after applying h of Theorem 12 to F, the transformed formula $h(F(X, Y))=F_{1}\left(X, Y_{1}\right)$ satisfies the following properties:
(1) F_{1} consists of the major clauses and the discrepancy-test clauses (which now include the discrepancy-test clauses of F and the ones generated by h); and the number of discrepancy-test clauses is at most some constant times that of the major clauses.
(2) Each X - and Y_{1}-literal occurs at most once in the major clauses and at most some constant number of times in the discrepancy-test clauses.
(3) For any $t_{x} \in 2^{X}$, there exists $t_{y} \in 2^{Y_{1}}$ such that $\#\left[F_{1}\left(t_{x}, t_{y}\right)\right]=\max _{s_{y} \in 2^{Y}}$ $\#\left[F_{1}\left(t_{x}, s_{y}\right)\right]$, and that all discrepancy-test clauses of F_{1} are satisfied by t_{x} and t_{y}.

We will use these properties in Section 4.

4. Main Result

We first review some definitions on directed graphs. A digraph is a tuple $G=$ (V, A), where V is a set of vertices and $A \subseteq V \times V$ is the set of directed edges.

For convenience, we often write $|G|$ for $|V|$; we will say that G contains $u \rightarrow v$ if $u, v \in V$ and $\langle u, v\rangle \in A$. A circuit in G is a sequence of vertices v_{1}, \ldots, v_{l} such that $\left\langle v_{i}, v_{i+1}\right\rangle \in A$ for $1 \leqslant i<l$, and $v_{i} \neq v_{j}$ for all $1 \leqslant i \neq j \leqslant l$, except that $v_{1}=v_{l}$.

An alterable digraph is a pair $\langle G, S\rangle$, where $G=(V, A)$ is a digraph and $S \subseteq A$. Given $S^{\prime} \subseteq S$, we let $G\left(S^{\prime}\right)$ be the digraph induced by reversing the orientations of the edges in S^{\prime}. We note that although such a process potentially induces multi-graphs, our construction in the sequel ensures that such does not happen.

Recall that for any alterable digraph $G, l c(G)$ denotes the maximum integer k such that G has a simple circuit of length at least k, regardless of the orientations of the alterable edges of G. We will prove that approximating $l c(G)$ for any alterable digraph G to within some constant factor is as hard as solving any Π_{2}^{P}-complete problems and therefore fix its complexity at exactly the second level of PH .

THEOREM 14. $\left\langle l c(G):\left(1-\varepsilon_{3}\right)\right| G\left|,\left(1-\varepsilon_{4}\right)\right| G\left\rangle\right.$ is Π_{2}^{P}-hard for some constants $0<\varepsilon_{3}<\varepsilon_{4}<1$.

Proof. We will show that $\left\langle f_{\mathrm{MAX}^{2}-3 \mathrm{SAT}_{2}-\mathrm{B}}: 1-\varepsilon_{1}, 1-\varepsilon_{2}\right\rangle$ is G-reducible to $\left\langle l c(G):\left(1-\varepsilon_{3}\right)\right| G\left|,\left(1-\varepsilon_{4}\right)\right| G\left\rangle\right.$; the actual values of ε_{3} and ε_{4} will be determined later. As indicated in Remark 13, we can restrict input instance $F(X, Y)$ for the MAX-3SAT 2 - B problem to those satisfying the following requirements:
(a) F is the conjunction of two 3CNF boolean formulae F_{M} and F_{D} having m and $n=O(m)$ clauses respectively, and each literal occurs at most once in F_{M} and at most B times in F_{D} for some constant B.
(b) For any truth assignment t_{x} to X, there always exists a truth assignment t_{y} to Y such that $\#\left[F\left(t_{x}, t_{y}\right)\right]=\max _{s_{y} \in 2^{Y}} \#\left[F\left(t_{x}, s_{y}\right)\right]$, and that $\operatorname{Pr}\left[F_{D}\left(t_{x}, t_{y}\right)\right]=1$.
Let $F_{M}(X, Y)=C_{1} \wedge \ldots \wedge C_{m}$ and $F_{D}(X, Y)=D_{1} \wedge \ldots \wedge D_{n}$, where $X=\left\{x_{1}, \ldots, x_{r}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{s}\right\}$, and C_{i} and D_{j} are 3-literal clauses over X and Y. We construct a digraph $G_{F}=\left(V_{F}, A_{F}\right)$ and $S \subseteq A_{F}$ as follows. Let " $u \rightleftharpoons v$ " denote the digraph $(\{u, v\},\{\langle u, v\rangle,\langle v, u\rangle\}) . G_{F}$ contains two groups of subgraphs.
(1) For each variable $v \in X \cup Y$, we have a variable digraph for v containing the following components: $v^{*} \rightarrow v, v^{*} \rightarrow \bar{v}, v \rightarrow v[1] \rightleftharpoons v[2] \rightleftharpoons \cdots \rightleftharpoons v[B] \rightleftharpoons \bar{v}$, and $v[1] \rightarrow v$ if $v \in Y$. We call v and \bar{v} boundary vertices. Figure 1 (a) shows the variable digraph for x_{i}; the symbol " \times " is to be explained later.
(2) For each clause C_{i}, there is a clause digraph consisting of a single vertex c_{i}; for each clause D_{j}, there is a clause digraph d_{j} of $6 B+6$ vertices. Each literal v (or $\neg v$) occurring in D_{j} corresponds to a path of length $2 B+2$ in d_{j}, and we refer to this path by v^{j} (or, respectively, \bar{v}^{j}); the first vertex on this path is labeled by $v^{j}[0]$ and the last by $v^{j}[1]$ (or, respectively, $\bar{v}^{j}[0]$ and $\bar{v}^{j}[1]$), and these are boundary vertices for d_{j}. We show in Figure 1(b) a clause digraph d_{j} and a path x_{i}^{j} (enclosed by dotted box) corresponding to the literal x_{i} in D_{j}. (In Figure 1(b), we use $-\longrightarrow$ to represent a partial path of length $B-1$.) In addition to these paths,

(a)

(b)

Fig. 1. Digraphs for variable x_{i} and clause D_{j}.
we also have in d_{j} three pairs of complementary inter-literal edges, as shown in Figure 1 (b) by slanting and circled arrows. It is easy to verify that in order for a circuit h to visit d_{j} completely, h can pass d_{j} either one, two or three times, each time entering at some $v^{j}[0]$ and leaving via $v^{j}[1]$ for some literal $v \in D_{j}$, utilizing inter-literal edges to visit vertices on other paths if necessary.

These component digraphs are then interconnected by the following intercomponent edges through boundary vertices: For each literal v occurring in clauses $D_{j_{1}}, D_{j_{2}}, \ldots, D_{j_{b}}$ and C_{i}, with $1 \leqslant j_{1}<j_{2}<\cdots<j_{b} \leqslant n$ and $1 \leqslant i \leqslant m$, we add the following edges:
(i) $v \rightarrow v^{j_{1}}[0]$,
(ii) $v^{j_{k}}[1] \rightarrow v^{j_{k+1}}[0], \quad 1 \leqslant k \leqslant b-1$,
(iii) $v^{j_{b}}[1] \rightarrow c_{i}$, and
(iv) $\quad c_{i} \rightarrow u^{*}$, for all $u \in X \cup Y$.

If v does not occur in any C_{i} (or, instead, in any D_{j}), then we replace (iii) and (iv) by $v^{j_{b}}[1] \rightarrow u^{*}$ (or, respectively, replace (i), (ii), and (iii) by $v \rightarrow c_{i}$). For each literal $\neg v$, we do the same (i.e., replace the symbol v in the above by \bar{v}). For convenience, we shall call the inter-component edge $v \rightarrow v^{j_{1}}[0]$ the positive edge for v and $\bar{v} \rightarrow \bar{v}^{\prime}{ }_{1}[0]$ the negative edge for v. Furthermore, for any literal v, it is obvious that the above inter-component edges connect the paths $v^{j_{1}}, v^{j_{2}}, \ldots, v^{j_{b}}$

Fig. 2. Interconnections among component digraphs.
into a unique path from v to $c_{j} ;{ }^{1}$ we call this path $p(v)$. For each literal $\neg v$, the path $p(\bar{v})$ can be defined analogously. Shown in Figure 2 is the alterable digraph for $F\left(x_{1}, y_{1}, y_{2}\right)=C_{1} \wedge D_{1} \wedge D_{2} \wedge D_{3}$, where $C_{1}=\left(\neg x_{1} \vee \neg y_{1} \vee y_{2}\right)$, $D_{1}=\left(x_{1} \vee y_{1} \vee y_{2}\right), D_{2}=\left(\neg x_{1} \vee \neg y_{1} \vee \neg y_{2}\right), D_{3}=\left(x_{1} \vee y_{1} \vee \neg y_{2}\right)$. То avoid clutter, some of the edges (e.g., $x_{1}^{3}[1] \rightarrow x_{1}^{*}$) and vertex-labels (e.g., y_{2}) are omitted. Also, x_{1}^{*}, y_{1}^{*} and y_{2}^{*} are duplicated to facilitate drawing.

We finish the construction by defining the set of alterable edges to be $S=$ $\left\{\left\langle x_{i}, x_{i}[1]\right\rangle \mid x_{i} \in X\right\}$. In Figure 1(a), for example, the edge marked by " x " is alterable. The total number of vertices, $|V|$, is $O(m B)$: there are m clause digraphs c_{i} 's, each of size one; $n=O(m)$ clause digraphs d_{j} 's, each of size $O(B)$; and $O(m)$ variable digraphs, each of size $O(B)$.

We now show that the construction is indeed a G-reduction. First, we say that a subset $S^{\prime} \subseteq S$ of alterable edges and a truth assignment $t_{x} \in 2^{X}$ are consistent if for all $x_{i} \in X, t_{x}\left(x_{i}\right)=1$ if and only if $\left\langle x_{i}, x_{i}[1]\right\rangle \in S^{\prime}$, i.e., $\left\langle x_{i}[1], x_{i}\right\rangle$ is in $G_{F}\left(S^{\prime}\right)$. We consider two cases.

Case I. Suppose that for any $t_{x} \in 2^{X}$, we have $\max _{s_{y} \in 2^{Y}} \#\left[F\left(t_{x}, s_{y}\right)\right] \geqslant$ $\left(1-\varepsilon_{1}\right)(m+n)$. Then we will show that for any $S^{\prime} \subseteq S$, there exists a simple circuit in $G_{F}\left(S^{\prime}\right)$ that misses at most $\varepsilon_{1}(m+n)$ vertices in G_{F}.

More specifically, let $t_{S^{\prime}} \in 2^{X}$ be consistent with S^{\prime}. By our requirement (b) on F, we may assume that there exists $t_{y} \in 2^{Y}$ such that $\#\left[F\left(t_{S^{\prime}}, t_{y}\right)\right]=$ $\max _{s_{y} \in 2^{Y}} \#\left[F\left(t_{S^{\prime}}, s_{y}\right)\right]$ and $\#\left[F_{D}\left(t_{S^{\prime}}, t_{y}\right)\right]=n$, i.e., all unsatisfied clauses are among C_{i} 's. We exhibit a simple circuit $H\left(t_{S^{\prime}}, t_{y}\right)$, called the standard traversal by $t_{S^{\prime}}$ and t_{y}, in $G_{F}\left(S^{\prime}\right)$, which misses at most $\varepsilon_{1}(m+n)$ vertices of G_{F}.

[^1]Let $t=t_{S^{\prime}} \cup t_{y}$ (recall that truth assignments are simply subsets of boolean variables). We first define a circuit h in $G_{F}\left(S^{\prime}\right)$ as follows, and later "expand" it to $H\left(t_{S^{\prime}}, t_{y}\right)$. The circuit h consists of $r+s$ sub-paths, denoted by $h(v)$ for each $v \in X \cup Y$. If $t(v)=1$, let $h^{\prime}(v)$ be the path $v^{*} \rightarrow \bar{v} \rightarrow v[B] \rightarrow v[B-1] \rightarrow$ $\cdots \rightarrow v[1] \rightarrow v$, and define $h(v)=h^{\prime}(v) \cup p(v)$. If $t(v)=0$, let $h^{\prime}(v)$ be the path $v^{*} \rightarrow v \rightarrow v[1] \rightarrow v[2] \rightarrow \cdots \rightarrow v[B] \rightarrow \bar{v}$, and define $h(v)=h^{\prime}(v) \cup p(\bar{v})$.

Note that the last vertex of each sub-path is always connected to v^{*} for any $v \in X \cup Y$, and therefore we can concatenate $h\left(x_{1}\right)$ through $h\left(y_{s}\right)$ into a simple circuit h. This completes the definition of h. It can be seen that h visits all variable digraphs and all clause digraphs to which the corresponding clauses are satisfied by t. Now for each clause digraph d_{j} visited by h fewer than three times, we expand h by using inter-literal edges so that all vertices in d_{j} are covered; let $H\left(t_{S^{\prime}}, t_{y}\right)$ be the simple circuit so obtained from h. We can see that if h visits d_{j}, then $H\left(t_{S^{\prime}}, t_{y}\right)$ visits all vertices of d_{j}. Since at most $\varepsilon_{1}(m+n)$ clauses of F_{M} are not satisfied by t, h then fails to visit at most $\varepsilon_{1}(m+n)$ clause digraphs c_{i} 's, and so does $H\left(t_{S^{\prime}}, t_{y}\right)$. As each c_{i} consists only of one vertex, Case I is proved.

Case II. Suppose that there exists some $t_{x} \in 2^{X}$ such that $k\left(t_{x}\right)=$ $\max _{s_{y} \in 2^{Y}} \#\left[F\left(t_{x}, s_{y}\right)\right] \leqslant\left(1-\varepsilon_{2}\right)(m+n)$. Fix such a t_{x}, and let $S_{t_{x}} \subseteq S$ be consistent with t_{x}. We will show that any simple circuit in $G_{F}\left(S_{t_{x}}\right)$ misses at least $\varepsilon_{2}(m+n)$ vertices.

By requirement (b), we can find $t_{y} \in 2^{Y}$ such that $\#\left[F\left(t_{x}, t_{y}\right)\right]=k\left(t_{x}\right)$ and $\operatorname{Pr}\left[F_{D}\left(t_{x}, t_{y}\right)\right]=1$. Let h_{0} be the standard traversal by t_{x} and t_{y} in $G_{F}\left(S_{t_{x}}\right)$ as defined in Case I. Then h_{0} misses $k_{0} \geqslant \varepsilon_{2}(m+n)$ vertices, all among c_{i} 's. We will show in the following that any simple circuit h in $G_{F}\left(S_{t_{x}}\right)$ misses at least as many vertices as h_{0} does.

Let t_{h} be the truth assignment corresponding to h; that is, for all $v \in X \cup Y$, $t_{h}(v)=1$ if and only if the positive edge for v is in h. Let $t_{h, x}=t_{h} \cap X$, and $t_{h, y}=t_{h} \cap Y$. Let δ_{h} be the number of $x_{i} \in X$ such that $t_{x}\left(x_{i}\right) \neq t_{h, x}\left(x_{i}\right)$. We claim that for any $s_{y} \in 2^{Y}$,

$$
\begin{equation*}
\#\left[F\left(t_{h, x}, s_{y}\right)\right] \leqslant \#\left[F\left(t_{x}, t_{y}\right)\right]+\delta_{h}(B+1) \tag{4}
\end{equation*}
$$

To justify the claim, we notice that each X-literal x_{i} or $\neg x_{i}$ occurs in at most $B+1$ clauses. So,

$$
\#\left[F\left(t_{h, x}, s_{y}\right)\right] \leqslant \#\left[F\left(t_{x}, s_{y}\right)\right]+\delta_{h}(B+1)
$$

The claim follows immediately from requirement (b) that \#[F($\left.\left.t_{x}, s_{y}\right)\right] \leqslant \#\left[F\left(t_{x}, t_{y}\right)\right]$.
Now we say that h changes tracks (or, cheats) in a clause digraph d_{j} if h enters d_{j} at some $v^{j}[0]$ (or, $\bar{v}^{j}[0]$) but does not leave via $v^{j}[1]$ (or, respectively, $\bar{v}^{j}[1]$) for some literal v (or, respectively, $\neg v$) in D_{j}, as demonstrated in Figure 3. Let δ_{h}^{\prime} be the number of clause digraph d_{j} in which h cheats. We observe that each time h cheats, it is able to visit at most B extra clause digraphs before it changes tracks

Fig. 3. h changes tracks.
again or visits a variable digraph. Therefore, the number of clause digraphs ever visited by h is

$$
\begin{equation*}
\mathcal{V}_{h} \leqslant \#\left[F\left(t_{h, x}, t_{h, y}\right)\right]+\delta_{h}^{\prime} \cdot B \tag{5}
\end{equation*}
$$

Combining (4) and (5), we have

$$
\mathcal{V}_{h} \leqslant \#\left[F\left(t_{x}, t_{y}\right)\right]+\delta_{h}(B+1)+\delta_{h}^{\prime} \cdot B
$$

In other words, h fails to visit at least $k_{0}-\left(\delta_{h}+\delta_{h}^{\prime}\right)(B+1)$ clause digraphs.
On the other hand, for each variable x_{i} such that $t_{x}\left(x_{i}\right) \neq t_{h, x}\left(x_{i}\right), h$ misses $B+1$ vertices in the variable digraph for $x_{i}: x_{i}[1], \ldots, x_{i}[B]$ and one of x_{i} and \bar{x}_{i}. In addition, each time h cheats in a clause digraph d_{j}, it loses access to at least $B+1$ vertices in d_{j} (see Figure 3). Therefore h misses additional $\delta_{h}(B+1)+\delta_{h}^{\prime}(B+1)$ vertices. Altogether, h misses at least

$$
\delta_{h}(B+1)+\delta_{h}^{\prime}(B+1)+k_{0}-\left(\delta_{h}+\delta_{h}^{\prime}\right)(B+1) \geqslant k_{0}
$$

vertices. Case $I I$ is therefore proved.
To conclude, if $\min _{s_{x} \in 2^{X}} \max _{s_{y} \in 2^{Y}} \#[F(X, Y)] \geqslant\left(1-\varepsilon_{1}\right)(m+n)$, then $l_{c}\left(G_{G}\right) \geqslant\left|G_{F}\right|-\varepsilon_{1}(m+n)$; and if $\min _{s_{x} \in 2^{X}} \max _{s_{y} \in 2^{Y}} \quad \#[F(X, Y)] \leqslant(1-$ $\left.\varepsilon_{2}\right)(m+n)$, then $l c\left(G_{F}\right) \leqslant\left|G_{F}\right|-\varepsilon_{2}(m+n)$. Note that G_{F} is of size $O(m B)$, and $n=O(m)$. Therefore, to finish the proof, choosing $\varepsilon_{3}=\varepsilon_{1} / c$ and $\varepsilon_{4}=\varepsilon_{2} / c$ for some $c=O(B)$ suffices.

5. Open Questions

Many NP-completeness proofs are built on reductions from the famous 3SAT problem - it reduces the complex operations of a Turing Machine to simple boolean operations. [10] further demonstrated the advantages of having the occurrences of the variables bounded by reducing it to many other NP-hard approximation problems. It appears that the problem $\mathrm{MAX}-3 \mathrm{SAT}_{2}-\mathrm{B}$ might play a similar role in proving the nonapproximability of Π_{2}^{P}-hard functions. We have successfully extended
their result to the case of MAX-3SAT 2 -B. An important difference however needs to be pointed out. We observe that the reduction of [10] from MAX-3SAT to MAX$3 \mathrm{SAT}_{2}-\mathrm{B}$ successfully preserves the property that the problems have only one-sided errors; that is, $\left\langle f_{\text {MAX-3SAT }}: 1,1-\delta\right\rangle$ is G-reducible to $\left\langle f_{\mathrm{MAX}^{2}-3 \mathrm{SAT}_{2}-\mathrm{B}}: 1,1-\delta^{\prime}\right\rangle$. Our reduction from MAX-3SAT ${ }_{2}$ to $\mathrm{MAX}^{2}-3 \mathrm{SAT}_{2}-\mathrm{B}$, however, does not preserve this property; we were only able to show that $\left\langle f_{\mathrm{MAX}^{2}-3 \mathrm{SAT}_{2}}: 1,1-\varepsilon\right\rangle$ is G-reducible to $\left\langle f_{\mathrm{MAX}^{3 S A T}}^{2}\right.$ - $\left.\mathrm{B}: 1-\varepsilon_{1}, 1-\varepsilon_{2}\right\rangle$, with $\varepsilon_{1}>0$. In other words, we have introduced a new error factor in our reduction. It is an interesting open question whether the one-sided version $\left\langle f_{\mathrm{MAX}^{3 S A T}}^{2}-\mathrm{B}: 1,1-\varepsilon_{2}\right\rangle$ is Π_{2}^{P}-hard for some $\varepsilon_{2}>0$.

Karger et al. [8] have proved, using a technique of amplifying the nonapproximability factors, that the c-approximation of the longest circuit problem of undirected graphs is NP-hard for all $c>1$. A straightforward application of their technique to our case does not seem to work, since our graphs contain alterable edges and since our nonapproximability result on $\mathrm{MAX}-3 \mathrm{SAT}_{2}-\mathrm{B}$ allows two-sided errors. Whether our main result Theorem 14 may be improved to an arbitrarily large gap c is another interesting question.

References

1. M. Ajtai (1987), Recursive Construction for 3-Regular Expanders, in Proc. 28th IEEE Symp. on Foundations of Computer Science, pp. 295-304.
2. A. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy (1992), Proof Verification and Hardness of Approximation Problems, in Proc. 33rd IEEE Symp. on Foundations of Computer Science, pp. 14-23.
3. A. Condon, J. Feigenbaum, C. Lund, and P. Shor (1993), Probabilistically Checkable Debate Systems and Approximation Algorithms for PSPACE-Hard Functions, in Proc. 25th ACM Symp. on Theory of Computing, pp. 305-314.
4. M.R. Garey and D.S. Johnson (1979), Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman and Company.
5. K.-I. Ko and C.-L. Lin (1994), Non-Approximability in the Polynomial-Time Hierarchy, Technical Report 94-2, Dept. of Computer Science, SUNY at Stony Brook.
6. K.-I. Ko and C.-L. Lin (1995), On the Complexity of min-max Optimization Problems and Their Approximation, in D.-Z. Du and P.M. Pardalos, eds., Minimax and Applications, pp. 213-233, Kluwer, Boston.
7. M. Kiwi, C. Lund, A. Russell, D. Spielman, and R. Sundaram (1994), Alteration in Interaction, in Proc. 9th IEEE Structure in Complexity Theory Conference, pp. 294-303.
8. D. Karger, R. Motwani, and G.D.S. Ramkumar (1993), On Approximating the Longest Path in a Graph, in Algorithms and Data Structures, Proc. of the 3rd Workshop, WADS'93, Lecture Notes in Computer Science 709, pp. 421-432, Springer-Verlag.
9. C. Lund and M. Yannakakis (1993), On the Hardness of Approximating Maximization Problems, in Proc. 25th ACM Symp. on Theory of Computing, pp. 286-293.
10. C.H. Papadimitriou and M. Yannakakis (1991), Optimization, Approximation, and Complexity Classes, J. Comput. System Sci. 43, 425-440.
11. C.H. Papadimitriou and M. Yannakakis (1993), The Traveling Salesman Problem with Distances One and Two, Math. Oper. Res. 18(1), 1-11.
12. L.J. Stockmeyer (1977), The Polynomial-Time Hierarchy, Theoret. Comput. Sci. 3, 1-22.

[^0]: * Research supported in part by NSF grant CCR 9121472.
 ** email: keriko@sbcs.sunysb.edu.
 \ddagger email: longlin@sbcs.sunysb.edu.

[^1]: ${ }^{1}$ We omit the case in which v does not occur in any C_{i}, and the case in which v does not occur in any D_{j}. In both cases, the path can be similarly defined.

