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Abstract. An alterable digraph is a digraph with a subset of its edges marked alterable and their 
orientations left undecided. We say that an alterable digraph has an invariant of k on the length of 
the longest circuit if it has a circuit of length at least k regardless of the orientations over its alterable 
edges. Computing the maximum invariant on the length of the longest circuit in an alterable digraph 
is a global optimization problem. We show that it is hard to approximate the global optimal solution 
for the maximum invariant problem. 
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1. In troduct ion  

We study the global optimization problems in dynamic environments modeled by 
alterable digraphs. An alterable digraph is a directed graph of which a subset of 
edges are marked alterable and have their orientations left undecided. An example 
of this kind of environment is the transportation system of a metropolitan area 
where one-way streets are dynamically directed to accommodate varying traffic 
requirements. Informally, an alterable digraph is a "succinct" description of a 
group of, potentially exponentially many, digraphs, and therefore testing whether 
a property Q is invariant over the group of digraphs would intuitively be more 
difficult than testing Q on a single digraph. 

The specific problem to be studied in this paper is the Longest Circuit problem 
in alterable digraphs: given an alterable digraph G, find the maximum integer l c(G) 
such that G has a simple circuit of length at least lc(G), regardless of the orientations 
of the alterable edges of G. The longest circuit problem in undirected graphss is 
a well-known N P-hard problem and is closely related to the Travelling Salesman 
problem (TSP). Papadimitriou and Yannakakis showed in [11] that there exists 
a constant c > 1 such that the problem of approximating the optimal travelling 
salesman tour in a complete graph with edges of length one or two is NP-hard. 
Karger et al. [8] used this result to show that the problem of approximating the 
length of the longest circuit in an undirected graph to within any constant factor 
c > 1 is also N P-hard. 
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We study in this paper the effect of dynamic environment on the computational 
complexity of the longest circuit problem. Note that the value o f / c (G)  for an 
alterable digraph G is required to'remain the lower bound of the length of the 
longest circuit in G for all possible dynamic changes on the directions of alterable 
edges. This requirement corresponds to an extra level of nondeterminism, and 
potentially raises the complexity of the problem from NP to the second level 
of the polynomial-time hierarchy (PH) [12, 4] of which NF ) is the first level. 
Intuitively it is not hard to see that most dynamic optimization problems fall into 
this complexity category. Our main result here shows that approximating the value 
of lc(G) is as hard as computing it exactly; specifically we show that there is 
a constant c > 1 such that the problem of computing a value lc~(G) satisfying 
lc(G)/c <~ lc~(G) <~ c.  Ic(G) for any alterable digraph G is complete for the 
second level II2 P of PH. As a consequence, even if we have the access to an oracle 
capable of solving an NP-complete problem such as the Satisfiability problem, it 
is still hard to approximate the value of le(G) within a constant factor. 

Our work continues the recent development on the intractability of approximat- 
ing many N P-hard optimization problems including the problems MAX-CLIQUE 
and MIN-SET-COVER [2, 9], and of approximating some PS PACE-hard problems 
such as MAX-GEOGRAPHY [3]. These works suggest that for many intractable 
optimization problems, approximating the optimum solutions within a constant 
factor is essentially as hard as finding the exact optimum solutions. In [5, 7], this 
development has been extended to the second and higher levels of PH. Essentially 
it is shown in [5] that the approximation of MAX-3SAT2 to within some constant 
factor c > 1 is II~-hard, where MAX,3SAT2 is the following extension of the 
Maximum-Satisfiability problem: given a 3CNF boolean formula F(X,  Y) over 
two sets of variables X and Y, find the maximum integer k such that for any truth 
assignment t= to X there exists a truth assignment t v to Y satisfying at least k 
clauses of F .  Similar results for other levels of PH are also shown. 

For technical reasons, we introduce, in Section 3, a subproblem MAX-3SATz-B 
of MAX-3SAT2 in which the number of occurrences of each boolean variable in a 
3CNF input formula is bounded by some constant. We show that the approximation 
to this subproblem within a constant factor is also IIzP-hard. Our proof is a nontrivial 
extension of [ 10] where the problem MAX-3SAT-B, a subproblem of MAX-3SAT, 
is shown to be hard to approximate. 

Finally we point out that our reductions use a more general notion of gap- 
preserving reduction than the linear reduction of [10]. This gap-preserving reduc- 
tion is the most general type of reductions that preserve nonapproximability results 
and is necessary in our context. We present this notion formally in Section 2, along 
with the preliminary results in [5]. The main result is shown in Section 4. 
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2. Complexity of Approximation Problems 

In this section, we review the notion of completeness in NP and l ip ,  and define 
the notion of the gap-preserving reduction. We let E be the binary alphabet {0, 1 } 
and ~* be the set of finite strings over ~. For any string x in ~*, we denote by Ixl 
the length of x. Let Q+ be the set of positive rationals and R + the set of positive 
reals. In the following, we briefly review some basic complexity classes frequently 
mentioned in literature. For more details, the reader is referred to any standard text, 
for instance [4]. 

A decision problem A is just a language A C_ ~*. The class P is the class of 
decision problems that are solvable by deterministic Turing Machines (TMs) in 
polynomial time; that is, for each A E P, there exists a TM MA such that for any 
x E ~*, MA on x halts in p(Ix[) steps for some polynomial p > 0, outputs 1 if 
x E A, and 0 otherwise. The class NP is the class of decision problems solvable by 
nondeterministic TMs in polynomial time. It is easy to see that P C_ NP. Whether 
P = NP is a major open question in complexity theory. 

A decision problem A is reducible to a decision problem B if there is a 
polynomial-time computable function f : ~* ~ E* such that for all x E ~*, 
z E A if and only if f (x )  E B. For any complexity class C, we say that the 
decision problem A is C-hard if for any B E C, B is reducible to A; A is C- 
complete if A is C-hard and A is also in C. The fact of A being NP-hard means 
that if A E P then P = NP, and so NP-hard problems are commonly considered 
intractable. A typical N P-complete problem is the Satisfiability problem (SAT) of 
deciding whether a given boolean formula is satisfiable. A corresponding optimiza- 
tion problem MAX-3SAT of finding the maximum number of satisfiable clauses in 
a given 3CNF boolean formula is known to be N P-hard. [4] contains hundreds of 
N P-complete problems. 

Let (x, y) be any pairing function mapping strings x and y to a single string 
in polynomial time. A well-known characterization of the class NP is as follows: 
A E NP if and only if there exists some B E P such that for all x E E*, 

x E A r (3Y, lYl <p(Ixl))[<~,Y) ~ B], 

where p(n) is some polynomial depending only on A. The complexity class I i  P 
is a natural extension of the class N P. We say that A E II P if there exists some 
B E P such that 

x E A r (Vy, lYl < p(lxl))( 3z, Izl ~< p(lxl))[( ~, (y,z)) E B]. 

It is obvious that NP c l ip ,  and whether the inclusion is proper is also a major 
open question. A typical HU-complete problem, SAT2, is that of deciding whether 
a given quantified boolean formula (VXl). . .  (Vx~)(3yl) . . .  (3ys)r  is true, where 
r is a quantifier free boolean formula over variables xi's and yj's. [6] contains 
more l iP-complete problems. 

We now formalize the notion of approximating function evaluation problem and 
its relation to the complexity of decision problems. 
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DEFINITION 1. Let f ,  g : ~* --+ Q+ and c : N --+ R +, c(n) > 1 for all n, be 
given. We say that g approximates f to within a factor of c (c-approximates f 
in short) if for all z E P~*, we have f(x)/c(l~l) < g(x) < c(l~l) �9 f (~) .  The 
c-approximation problem of f is to compute a function g that c-approximates f .  

DEFINITION 2. Let A, B C_ N*, A N B = 0, and C be a decision problem class. 
We say (A, B) E C x co-C if A C C a n d / )  E C. Given two pairs (A, B) and 
(A', B')  in C x co-C, we say that (A, B) is G-reducible to (A', B') if there is a 
polynomial-time computable function f such that I (A)  C_ A' and f (B)  C_ B'. 
We say that (A, B) is C-hard if there exists a set C that is C-hard and (C, C') is 
G-reducible to (A, B). 

The following definition relates the hardness of approximating function values to 
that of pairs of decision problems. 

DEFINITION 3. Let f : N* --+ Q+ be a given function and c : N --+ Q+, 
c(n) > 1. We say that the c-approximation problem of f is C-hard if there exist 
s, I : N --+ O+, s(n) < l(n), such that 

1. for all n, c(n)s(n) < l(n)/c(n); and 
2. <{x I f(x) l(Ixl)}, I f(x) < is C-hard. 

Given s(n) < l(n), for the sake of simplicity, we shall write ( f  : l, s) for the pair 
of sets ({x I f (x )  ) l(Ixl)}, {x I f (x)  <~ s(Ixl)}); further, we shall write only the 
constants for corresponding constant functions, e.g., 1 for l(n) = 1. The following 
proposition can be easily verified. 

PROPOSITION 4. Let s < I. If  ( f  : l, s) is C-hard and C r P, then the (I/s)1/2_ 
approximation problem of f is not polynomial-time computable. 

Boolean formulae will be very much involved in our reductions. Let u be a boolean 
variable; by a literal on u we mean u itself or its negation ~u. For any boolean 
formula F(U) over a set U of boolean variables, we say that F(U) is in 3- 
conjunctive normal form (3CNF) if it is a conjunction of clauses and each clause 
is a disjunction of three literals over U. We say that variable u occurs in a clause 
C if C contains either u or -~u as one of its disjunct. A truth assignment t to a set 
of variable U is just a subset of U; for any u E U, we say that t sets u to true (or 
false), written as t(u) = 1 (or, respectively t(u) = 0), if u E t (or, respectively, 
u 6 t). We let 2 U denote the set of truth assignments to U. For any t E 2 U, we let 
#[F(t)] (and Pr[F(t)]) denote the number (and, respectively, fraction) of satisfied 
clauses of F by t; for example, if F(U) = (/z 1 V ~z 2 V 2z3)/~ (--nzt 1 V --n/z 2 V --nTA3) 

and t = 0, then #[F(t)] = 1 (and, respectively, Pr[F(t)] = 1/2). Often the set U of 
variables is partitioned into disjoint sets, say X and Y, each dealt with differently; 
we then extend the above notations to, respectively, F(X,  Y), #[F(tx, ty)], and 
Pr[F(tx, ty)] for tx C 2 X and ty E 2 Y. We call a variable in X an X-variable, and 
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analogously call a literal defined on X an X-literal; Y-variables and Y-literals are 
defined similarly. 

Our basis of reduction is the following standard 1-If-hard problem. It is proved 
in [5] that the corresponding approximation problem is also IIf-hard. 

MAX-3SAT2 
Input: A 3CNF boolean formula F ( X ,  Y)  over two sets of variables X and Y. 

Output: fMAX-3SA'r2 (F)  = mint~ E2 X maxt~ C2 Y P r [ F  (~;x, tg) ] .  

PROPOSITION 5. [5]. (fMAX-3SAT2 " 1, 1 -- ~) is Hf-hard for some constant 
0 < e < l .  

In Section 3, we consider a subproblem MAX-3SAT2-B of MAX-3SAT2. Inputs 
to both problems are the same except that for MAX-3SAT2-B the number of 
occurrences for each variable is bounded by some fixed constant b. The subscript "2" 
is intended as a reminder of the two levels of optimization (min and max) involved 
in the definition above. Without the subscript, that is, MAX-3SAT and MAX-3SAT- 
B, we mean the versions of MAX-3SAT2 and MAX-3SAT2-B respectively with 
the restriction of X = ~. 

3. A Subproblem of Maximum Satisfiability2 

In this section we prove our main technical theorem, that is, MAX-3SATz-B is 
hard to approximate. The main theorem will be proved in two stages: given a 
3CNF boolean formula F ( X ,  Y)  for the MAX-3SAT2 problem, we in the first 
stage consider instances having a constant bound on the number of occurrences for 
X-variables and then, in the second stage, consider those having a constant bound 
on the number of occurrences for both X- and Y-variables. 

Papadimitriou and Yannakakis [10] used the fact that there exist polynomial- 
time constructible expanders of bounded degrees to show that MAX-3SAT is 
reducible to MAX-3SAT-B. In the first part of the proof, we will need an extended 
property of expanders. We first review the notion of the expanders. For any con- 
nected graph G = (V, E)  and any u, v E V, let dista(u, v) be the number of edges 
in a shortest path from u to v; for convenience, we let dista(u, u) = 0. Further, for 
any S C_ V, let distG(u, S) = rrfin{distc(u, v) l v E S}. 

DEFINITION 6. Let c be a constant with 0 < c < 1. We call a graph G = (V, E)  
a c-expander if for any subset S of V having at most IvI/2 vertices, [{u E 
V IdistG(u ,S)  = 1)[ ~> c[S I. 

We say a graph is of degree k if every vertex in G is of degree k. 

LEMMA 7. [1]. There exist a constant c, 0 < c < 1, and an algorithm that, on 
input n, constructs a c-expander of size n and degree three in time polynomial in 
n .  
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From the definition, we know that if G is a c-expander then for any subset S C V, 
with IS[ ~< IVI/2, there exist sufficiently many vertices outside of S that are 
adjacent to some vertices inside S. The following lemma shows that G can be so 
augmented that a constant fraction of vertices inside of S are adjacent to some 
vertices outside of S. 

LEMMA 8. Let 0 < 5 < 1 be any constant. Then for any n there exists a polyno- 
mial time constructible graph 9[n, 5] = (V, E) satisfying the following properties: 
(a) IVI = n, (b) ~[n, 5] is of degree b, where b is a constant depending only on 5, 
and (c)for any S C_ V, ISI <<. n/2, 

I{u �9 Sldist~[n,6](u, V -  S ) =  1}l > ( 1 -  5)ISl. 

Proof. Let G ~ = (V, E') be a c-expander of size n constructed in Lemma 7. Let 
d be the least integer such that (1 - c/3) a < 5. Then we claim that G = (V, E)  
with E = {(u ,v) [d i s ta , (u ,v)  <~ d} has the properties (a), (b) and (c), First, 
for property (b), we note that the degree of G is bounded by b = 3 a+l. Sec- 
ond, for property (c), we let S C_ V, ISl -< n/2, and for each i ) 0, define 
Si = {u E S ldistc, (u, V - S) > i}. We argue that IS~+ll -< (1 - c /3) ls ,  I. To see 
this, we observe that (1) by the definition, at least clSi I vertices v of V - Si satisfy 
that dista, (v, Si) = l, and (2) at most three of them can be adjacent to a common 
vertex in Si, since G' has degree 3. Therefore, at most (1 - c/3)ISil vertices v of 
S~ satisfy that distc,(v, V - Si) ) 2, or equivalently, dista,(v, V - S) > i + 1. 
This shows that ISi+ll ~< (1 - c/3) 1S~ I for each i >/0. Unwrap the recursion and 
we obtain ISil ~< ISl(1 - c/3) i. Finally setting i to d satisfies property (c), and 
hence the claim. [] 

Now we are ready to prove the main result of this section. Let MAX-3SAT2-XB be 
the version of MAX-3SATE-B without restricting the number of occurrences for 
each Y-variable; let fMAX-3SAT2-XB be the correspondingly defined function. 

LEMMA 9. (fMAX-3SAT2-XB " 1 - -  ~], 1 ~i) is IIP-hardfor some constants 0 < 
e~ < el 2 < 1. 

Pro@ By Proposition 5, ( f M A X - 3 S A T 2  " 1, 1 - e) is H2P-hard for some constant 
0 < e < 1. We prove that (fMAX-3SAT2 : 1, 1 -- e) is G-reducible to (fMAX-aSATE-XB : 
1 - -  e~, 1 -- eL) for some constants 0 < ell < e L < 1; the actual values of e~ and e L 
will be chosen later. 

Let F ( X ,  Y)  be a 3CNF boolean formula over two sets of variables X and Y. 
Assume that F has n clauses C1 , . . . ,  C~. Without loss of generality, we assume that 
no clause of F contains both v and its complement -,v for any variable v E X U Y. 
We first construct a new boolean formula F'(X ' ,  Y')  from F ( X ,  Y); we note 
that it will only be in CNF, not in 3CNF as required. Converting F' (X ' ,  Y')  to 
an equivalent 3CNF formula is a routine task and is deferred till the end of the 
proof. 
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Construction. Assume that X = {Xl , . . . , x r} .  For each j ,  1 ~< j ~< r, let 
d(j) be the number of clauses of F ( X ,  Y)  that contain either xj or -,xj, and 
let C~1, C~2, . . . ,  Cid(j) be those clauses. Then, we define 2d(j) new variables and 

. - . �9 �9 . 

group them as X j  = {x~l , . . . ,x} a~ and Uj = {U31,...,uZjd(3)); variables in 
X j  are called the occurrence variables of xj. The two sets of variables in F ~ are 
X ~ = X1 U . . .  U X r  andY'  = Yt2 U1 U . . .  U Ur. 

For each j ,  1 <~ j ~< r, define a graph Gj = G[d(j), e/3] and match arbitrarily 
i~ i xj , . . . ,  xj d(j) with the d(j) vertices of G j .  We say that two occurrence variables xj 

and x}' are adjacent if their corresponding vertices in Gj are adjacent. The clauses 
of F ~ are divided into the following two groups: 

(1) Major clause C~, for each 1 ~< i ~< n: Each C~ is obtained from C~ as follows: 
i and add an extra literal if xj appears in Ci, then replace the occurrence of xj by xj 

i For example, let Ci = (xl V --nx2 v Y3) and Cj = (~Xl V x2 V Y3) be two clauses U j .  

of F ( X ,  Y). Then C~ = (x~ V u~ V-~x~ V u~ V Y3) and C~ = (--~x i v u~ V x~ V u~ V Y3). 
Note that Y-variables are not affected, and if Ci contains no X-variables, then 

= 

~" Assume that (2) Discrepancy-test clause Dj., for each occurrence variable xj.  
�9 l . !  i l  

h ,~'2 i Then, let xj , _j , . . . ,  xj b are the b occurrence variables of xj adjacent to zcj. 

�9 i' i' i' i and let i D i = (--,u} V xji v xj I v x~. 2 V . . .  v xj b) if C~ contains literal x j, Dj = 
�9 . i ~ i I .~ 

v v I v 2 v . . .  v i f  contains l i teral --,x}. Thus for the  

above example, the discrepancy-test clause D] will be of the first form, and D~ of 
the second form. 

We note that these clauses are set up to have the following properties: First, if 
the truth value assigned to x) is inconsistent with that to any of its neighbours in 

G j, then the discrepancy-test D} corresponding to x} will be satisfied, regardless of 

the truth value of u}. Thus, u) can be set to true and the major clause C~ is satisfied 
regardless of the truth values assigned to other liberals in C~. On the other hand, 

i and any of its adjacent variables are consistent, if the truth values assigned to xj 

then u} has to be set to false to satisfy the discrepancy-test clause D~-, and thus has 
no effect on satisfying C~. 

The above completes the construction of F~(X ~, Y~). It can be seen that F ~ has 
the following properties: each X-variable occurs only a constant number of times 
(say, two times the degree of 9[ra, r which depends only on r each clause 
contains only O (1) literals, and there are n major and at most 3n discrepancy-test 
clauses in F ~, since there are ~ : = l  d(j) <~ 3n occurrence variables. By adding 
dummy clauses, we can assume that F ~ has exactly 3n discrepancy-test clauses. 

Correctness. To see that the reduction is indeed a G-reduction, we first exhibit 
an error-confinement property of the reduction; namely, for any t~ E 2 x '  and 
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ty E 2 Y, we can always find tu E 2 U such that 

#[F'(tz, tyUtu)] = max#[F'(tx, tyUs)], and 
sE2  U 

i #[Dj (tx, t~)] = 1 for all discrepancy-test clause Dj.  (1) 

To see this, let sl E 2 U be such that #[F'(t~, ty U Sl)] = maxsczu #[F'(t~, tv U s)] 
but #[Dj (tx, sl)] = 0 for some discrepancy-test clause Dj.  Since D i is either of 

i v . . . )  or (~u i V~x~ v . . . ) ,  we must have sl(u~) = 1. Now the form (-~u~ V xj 
define 82 E 2 U by 82(u ) = Sl(U) for all u E U -  (u~-}, and l e t  8 2 ( u i )  = 0. 
We claim that #[F'(t~,ty U s2)] >/ #[F'(t~,t u U Sl)]. To justify, first we note 

only occurs in C~ and Dj., and Dj contains no Y-variables. Let that variable uj 

,'%,1 ---- # [ C : ( t x , t y U s 2 ) l - # [ C ~ ( t x ,  tyUSl ) ]  and A2 -- #[Dj.(t~, s2)-#[Dj(tz,  s2)]. 
It is clear that #[F'(t~,ty U s2)] - #[F'(t~,ty U Sl)] = A1 + A2. Since A2 = 1 
and A1 /> - 1 ,  the claim follows. We have just shown how to reduce by one the 
number of unsatisfied discrepancy-test clause without decreasing the total number 
of satisfied clauses in F ~. Repeat this process and we can find a t~ E 2 U satisfying 
the error-confinement property. 

REMARK 10. We summarize the following properties of the formula F' (X  ~, Y u 
u): 
(1) F~(X ~, Y U U) consists of the major clauses and the discrepancy-test clauses. 
(2) Each X ~- and U-literal occurs at most once in the major clauses and at most 

some constant number of times in the discrepancy-test clauses. 
(3) Each Y-literal occurs only in the major clauses, and the number of its occur- 

rences in F ~ is the same as that in F.  
(4) For any tx E 2 x ' ,  there exist t u E 2 y and t~ E 2 U such that the two equalities 

in equation (1) holds for F ~. (In other words, we can have all the errors, i.e., 
unsatisfied clauses, occur only in the major clauses.) [] 

Let m = mins~E2z maxsyE2Y #[F(sx, Sy)] and m' = mins, E2x, max su E 2 Y 

s~ E 2 U 

#[F(s~, sy U su)]. We claim that 

m ~ > 1 3 n + m - e n / 2 ,  and (2) 

rn I <~ 3n + m. (3) 

First, we prove inequality (2). Consider any t E 2 x ' .  Let P(xj) = {x E 
X / I t ( x )  = 1} and N(xj )  = {x E Xj It(x) = 0}. Define tz E 2 X as follows: for 
any l <~ j <,, r, 

1 i f IP(x j ) l  >/ ]N(xi)l,  and 
t~ (x/) = 0 otherwise. 
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By the definition of m, there must exist a ty E 2 r such that #[F(tx, ty)] >/m. By 
(1), we can always find a t~z 6 2 U such that #[F' (t, t v U tu)] = maxse2U #[F'  (t, t v U 
s)] and that all 3n discrepancy-test clauses are satisfied by t and t~,; that is, by 
t, ty and t~, all unsatisfied clauses are confined to among major clauses. Let 
Ai = #[Ci(tx,ty)] - #[C~(t, ty U tu)]. It is then clear that #[F'(t, ty U t~)] ) 
3n + m - ~ = 1  Ai. We will show that ~ = 1  A i  ~ r  and inequality (2) 
follows. 

i consistent if t(x}) = t z (x j ) ,  and call Let us call an occurrence variable xj 
i If C~ contains a frontal x} frontal if t(x}) r t(x}') for some x}' adjacent to xj .  

o c c u r r e n c e  variable x}, then D i , either of the form (-~u) V x}  V x j  lit V x j  2it V " " V x )  b't ) 
�9 i I i I i t 

or (~u} V -~x) V -~xj I V ~x j  2 V . . .  V ~x j  b ), is always satisfied by t, regardless of the 
�9 i truth value set to u); choose t~(u}) = 1 and then C~ = ( . . .  V uj V . . . )  is satisfied, 

i of C~ are consistent, then it leading us to Ai ~< 0. If all occurrence variables xj 
is clear that Ai ~< 0 also. Therefore, Ai > 0 only if C~ contains an inconsistent, 
non-frontal occurrence variable. The number of such major clauses, as we will 
argue below, is at most en/2 .  

Let Sj be the set of major clauses containing some occurrence variable x} of 
Xj.  By Lemma 8, at most 

(e/g) min{IP(xj)l, lN(xj)l} (e/e)lSjl 

clauses in Sj may contain inconsistent, non-frontal occurrence variable in Xj .  In 
total, there are at most Eff=l (e/6)lS~ I = (~/6) Eff=  ISjl non-frontal occurrence 
variables. Since each major clause C' contains at most three X~-variables, we must 
have I{j I C~ E Sj }1 < 3 for each i, 1 ~< i ~< n. Therefore 

T n 

 lSjl-- I{J I E Sj}I 3n. 
j = l  i = l  

It follows that the number of major clauses containing inconsistent, non-frontal 
occurrence variables is at most en/2 .  Therefore, we have ~ n = l  A i <~ en/2 ,  and 
inequality (2) follows. 

Next, we show inequality (3). Let t~ witness that m = maxsy #[F(tz, Sy)]. Then 

define t E 2 X' by t(x}) = t~(xj)  for all 1 ~< j ~< r and all occurrence variables 

x}'s of  xj.  Let t u E 2 y and tu E 2 U be such that 

#[F'(t,  ty U t~)] = max #[F'(i ,  sy U s~)]. 
sy E 2 Y 
s,, 6 2 u 

By (1), we can assume that tu is so chosen that all 3n discrepancy-test clauses 
are satisfied by t and tu. Let Ai ---- #[Ci(tx, tv) ] - #[C~(t,t v U tu)], and we have 
#[F'( t ,  t v U t~,)] = 3n + m - ~ = 1  Ai. We claim that Ai /> 0 for all 1 ~< i ~< n, 
from which inequality (3) follows. 
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Suppose otherwise and let Ai < 0 for some 1 ~< i ~< n. Then #[C~(tx,ty)] = 0 
i ~ X )  and #[C~(t,t u U t~)] = 1, and t~(u}) = 1 for some j such that either xj or 

occurs in C~. We consider only the former case; the argument for the latter is 
�9 i " i similar. Let C~ = (x) v . . . )  and Dj = (-,u) V xj V . . . ) ;  since #[C~(tx, ty)] = O, 

we have t z (x j )  = t (x i )  = 0. Since t is consistent, all occurrence variables of xj 

are set to 0 and hence D i is reduced to a single literal ~u i. But then t~(u}) = 1 

and therefore #[D i (t, t~)] = 0, contradicting equation (1). 
Finally we transform F p to a 3CNF formula F" .  To do this, we observe that 

there is a mapping that transforms a clause of B literals into a set of O(B)  3-literal 
clauses with 0(13) additional variables. Further, if the original clause is satisfiable, 
so are the derived set of 3-literal clauses as a whole; if the original is not satisfiable, 
all but one of the new clauses are simultaneously satisfiable (see [4] for the NP- 
completeness of 3SAT). Since the clauses of F ~ are of bounded length, after the 
transformation, F p still has at most kn 3-literal clauses for some constant k > 4. 
By adding dummy clauses, we may assume that F H has exactly kn 3-literal clauses 
for some constant k. 

REMARK 11. We note that the properties mentioned in Remark 10 of F ~ are 
preserved by this transformation. That is, if we keep the name "major clauses" 
("discrepancy-test clauses") for clauses in F"  that are generated from a major 
clause (a discrepancy-test clause, respectively) in F ~, then properties (1), (2) and 
(3) still hold for F" .  In addition, let Z be the set of new variables introduced by 
this transformation. Then we can rephrase properties (2) and (4) as follows: 

(2 ~) Each X I-, U- and Z-literal occurs at most once in the major clauses and at 
most some constant number of times in the discrepancy-test clauses. 

(#)  For any tx E 2 x ' ,  there exist ty E 2 y and t~ E 2 Uuz such that equation (1) 
holds for F" .  [] 

Let m 1' = mins~ maxs~ #[F"(sz,  sy)]. From inequalities (2) and (3), we have 
(a) if ra = n, then m' ) 4n - sn /2 ,  and so m" >1 kn - r  = (1 - r  

and 
(b) i f m  ~< (1 - r then ra' ~< 4n - r and m I' <. kn - en = (1 - r  
Therefore set e~ = r  and e~ = r  and the theorem is proven. [] 

With Lemma 9 proven, we can now apply the idea of the reduction of [10] to 
show that MAX-3SAT2-B is hard to approximate. Their reduction, called the linear 
reduction or simply the L-reduction, is a restricted version of the G-reduction. More 
precisely, they proved that there exist a polynomial-time computable function f 
and a constant a > 1 such that 
(i) for each instance H(U)  of MAX-3SAT with m clauses, f ( H ( U ) )  = H~(U I) 

is a 3CNF boolean formula with (a + 1)m clauses such that each variable in 
U j occurs at most a constant number of times, and 

(ii) maxt, c2~, #[H'(t ' )]  = a m  + maxtE2v #[H(t)]. 
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THEOREM 12. (fMAX-3SAT2-B : 1 - E l ,  1 - e2) is IIf-hardfor some constants 
0<~el < e 2  < 1. 

Proof. We prove that (fMAX-3SATa-XB : 1 -- e~, 1 -- e~/ is G-reducible to 
(fMAX-3SAT=-B : 1 -- el, 1 -- e2) for some el and e2 to be chosen later. 

Let F(X, Y) be a 3CNF boolean formula over two sets of variables X 
and Y. Assume that F has n clauses and that the number of occurrences of 
each X-variable is bounded by some constant. Recall that fMAX-3SATE(F) = 
min,~ max,~ #[F(s~, sy)]. Let f and o~ be the function and the constant satis- 
fying properties (i) and (ii) above. Define h(F(X, Y)) = f (F(X,  Y)), treating 
X-variables as constants. Assume that h(F(X, Y)) = F'(X, Y'). It is then clear 
that 

F,s, { } min max #[ (s~, y)] = min an+ max #[F(s~,sy)] 
szE2 X styE2 Yt szE2 X SyE2 Y 

= a n  + min max #[F(sx, Su) ]. 
sxE2 X ayE2 Y 

Now choose el = e~//(a + l) and e2 = e~ / (a  + 1) and we can see that 
(a) if fMaX-3SAT -X (F) > ( 1 -  then fMaX-3SAT2-B(h(F)) = 

(1 - El) (Ce + 1)n, and 
(b) if fMAX-3SATE-XB(F) ~< (1--d2)nthenfMhX.3SiTE_B(h(F)) <. ( a +  1--e~)n = 

( 1 -  e2)(o~ -t- 1)n. 
Note that h(F) has (a  + 1)n clauses and this completes the proof. [] 

REMARK 13. The proof of Theorem 12 preserves a similar error-confinement 
property to (4') of Remark 11: Assume that F(X, Y) is a 3CNF formula satisfy- 
ing properties (1), (2'), (3), and (4') (here, U and Z variables are considered as 
part of Y). Then after applying h of Theorem 12 to F,  the transformed formula 
h(F(X, Y)) = F1 (X, II1 ) satisfies the following properties: 
(1) F1 consists of the major clauses and the discrepancy-test clauses (which now 

include the discrepancy-test clauses of F and the ones generated by h); and 
the number of discrepancy-test clauses is at most some constant times that of 
the major clauses. 

(2) Each X- and Yl-literal occurs at most once in the major clauses and at most 
some constant number of times in the discrepancy-test clauses. 

(3) For any tz E 2 X, there exists t u E 2 yl such that #[Fl(tx,ty)] = maxsye2Y 
#[F1 (t~, Sy)], and that all discrepancy-test clauses of F1 are satisfied by tz and 
ty .  [] 

We will use these properties in Section 4. 

4. Main Result 

We first review some definitions on directed graphs. A digraph is a tuple G = 
(V, A), where V is a set of vertices and A C_ V x V is the set of directed edges. 
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For convenience, we often write I G[ for IV I; we will say that G contains u ~ v if 
u, v E V and (u, v) E A. A circuit in G is a sequence of vertices Vl , . . . ,  vl such 
that (vi, vi+l) E A for 1 ~< i < l, and vi 7 ~ vj for all 1 ~< i ~ j <~ l, except that 

Vl -'~ Vl. 

An alterable digraph is a pair (G, S/, where G = (V, A) is a digraph and 
S C_ A. Given S ~ C_ S, we let G(S ~) be the digraph induced by reversing the 
orientations of the edges in S ~. We note that although such a process potentially 
induces multi-graphs, our construction in the sequel ensures that such does not 
happen. 

Recall that for any alterable digraph G, lc(G) denotes the maximum integer k 
such that G has a simple circuit of length at least k, regardless of the orientations of 
the alterable edges of G. We will prove that approximating Ic(G) for any alterable 
digraph G to within some constant factor is as hard as solving any IIP-complete 
problems and therefore fix its complexity at exactly the second level of PH. 

THEOREM 14. (lc(G)" (1 - ~3)lal, (1 - ~4)IGI> is I I f  -hard for some constants 
0 < e 3 < e4 < 1. 

Proof. We will show that (fMAX-3SAT2-B : 1 -- el, 1 -- e2) is G-reducible to 
(Zc(a)  : (1 - e3 ) l a l ,  (1 - e4) lal); the actual values ofe3 and e4 will be determined 
later. As indicated in Remark 13, we can restrict input instance F(X,  Y) for the 
MAX-3SAT2-B problem to those satisfying the following requirements: 
(a) F is the conjunction of two 3CNF boolean formulae FM and FD having m 

and n = O(ra) clauses respectively, and each literal occurs at most once in 
FM and at most B times in FD for some constant B. 

(b) For any truth assignment tz to X, there always exists a truth assignment t v to Y 
such that #[F(tx, ty)] = maxs~E2Y #[F(tx, Sv) ], and that Pr[FD(tx, iv) ] = 1. 

Let FM(X, Y) = C1 A .. .  A C,~ and FD(X, Y) = D1 A .. .  A Dn, where 
X = {Xl , . . . ,  x~} and Y = {Yl,.. �9 Ys}, and Ci and Dj are 3-literal clauses over 
X and Y. We construct a digraph GF = (VF, AF) and S C_ AF as follows. Let 
"u ~- v" denote the digraph ({u, v}, {(u, v), (v, u)}). GF contains two groups of 
subgraphs. 

(1) For each variable v E X U Y, we have a variable digraph for v containing 
the following components: v* ~ v, v* ~ g, v ~ v[1] ~ v[2] ~ . . .  ~ v[B] = ~, 
and v[1] ~ v if v E Y. We call v and g boundary vertices. Figure l(a) shows the 
variable digraph for xi; the symbol " x "  is to be explained later. 

(2) For each clause Ci, there is a clause digraph consisting of a single vertex 
ci; for each clause Dj, there is a clause digraph dj of 6B + 6 vertices. Each literal 
v (or --,v) occurring in Dj corresponds to a path of length 2B + 2 in dj, and we 
refer to this path by v j (or, respectively, gJ); the first vertex on this path is labeled 
by vJ[0] and the last by vJ[1] (or, respectively, gJ[0] and ~J[1]), and these are 

J boundary vertices for dj. We show in Figure l(b) a clause digraph dj and a path x i 
(enclosed by dotted box) corresponding to the literal xi in Dj. (In Figure l(b), we 
use ~ to represent a partial path of length B - 1.) In addition to these paths, 
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(a) 

r . . . . . . . . . . . . . . . . . . . . .  ~ - - n  

3 �9  [01 
f , � 9  : -  , -  llll , e  "x 

- j \ 
(b) 

Fig. 1. Digraphs for variable xl and clause Dj. 

p a t h  corresponding to 
literal zi 

we also have in dj three pairs of complementary inter-l i teral  edges, as shown in 
Figure 1 (b) by slanting and circled arrows. It is easy to verify that in order for a 
circuit h to visit dj completely, h can pass dj either one, two or three times, each 
time entering at some v j [0] and leaving via v j [1] for some literal v E D j ,  utilizing 
inter-literal edges to visit vertices on other paths if necessary. 

These component digraphs are then interconnected by the following inter- 
component edges through boundary vertices: For each literal v occurring in clauses 
Dj l  , D j 2 , . . .  , Djb and Ci,  with 1 ~< Jl < j2 < "'" < Jb <~ n and 1 ~< i 4 m, we 
add the following edges: 

(i) v vJ'[0], 
(ii) vA[1] --~ vJk+~[0], 1 ~< k ~< b -  1, 

(iii) v jb [1] ~ ci, and 

(iv) c i ~ u * ,  for a l l u E X t O Y .  

If  v does not occur in any Ci (or, instead, in any D j ) ,  then we replace (iii) and 
(iv) by rib[l] -+ u* (or, respectively, replace (i), (ii), and (iii) by v ~ c~). For 
each literal ~v, we do the same (i.e., replace the symbol v in the above by ~). For 
convenience, we shall call the inter-component edge v --~ v jx [0] the posi t ive  edge 
for v and ~ --~ ~J'l [0] the negat ive  edge for v. Furthermore, for any literal v, it is 
obvious that the above inter-component edges connect the paths v jl , vJ:, . . . ,  v jb 
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~ -  v a r i a b l e  d i g r a p h  f o r  ~1 

m ~ I  m 1 1 , , ,,~[0] i~a[1] 

' ,~  .......... ...d.3. .............. ~ 

Yl i 

Fig. 2. Interconnections among component digraphs. 

into a unique path from v to cj; l we call this path p(v). For each literal ~v, 
the path p(~) can be defined analogously. Shown in Figure 2 is the alterable 
digraph for F(xl ,  Yl, Y2) = C1 A D1 A D2 A D3, where C1 = (--xl V -~Yl V Y2), 
D1 = (Xl V Yl V Y2), D2 = ("~Xl k/-"Yl  V "Y2),  D3 - -  (Xl V Yl V ~Y2). To 
avoid clutter, some of the edges (e.g., x3[1] -+ x~) and vertex-labels (e.g., Y2) are 
omitted. Also, * * y* x 1, Yl and 2 are duplicated to facilitate drawing. 

We finish the construction by defining the set of alterable edges to be S = 
{(x~,xi[1])[x~ E X} .  In Figure l(a), for example, the edge marked by " •  is 
alterable. The total number of vertices, [V], is O(mB): there are m clause digraphs 
ci's, each of size one; n = O(m) clause digraphs dj's, each of size O(B);  and 
O(m) variable digraphs, each of size O(B). 

We now show that the construction is indeed a G-reduction. First, we say that 
a subset S ~ C_ S of alterable edges and a truth assignment tx E 2 X are consistent 
if for all x~ E X,  tx(x~) = 1 if and only if (x~, xi[1]) E S', i.e., (x~[1], xi) is in 
GF (S~). We consider two cases. 

Case I. Suppose that for any tx E 2 X, we have max,yc2- #[F(tx, sy)] >1 
(1 - ~l)(m + n). Then we will show that for any S ~ c_ S, there exists a simple 
circuit in GF(S') that misses at most r  + n) vertices in GF. 

More specifically, let ts, E 2 x be consistent with S ~. By our requirement 
(b) on F ,  we may assume that there exists ty e 2 Y such that #[F(ts,, ty)] = 
maxs~e2r #[F(ts,, Sy)] and #[FD(tS,, ty)] = n, i.e., all unsatisfied clauses are 
among Ci's. We exhibit a Simple circuit H(ts, ,  ty), called the standard traversal 
by ts, and ty, in GF(S~), which misses at most El(m + n) vertices of GF. 

We omit the case in which v does not occur in any C~, and the case in which v does not occur 
in any Dj .  In both cases, the path can be similarly defined. 
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Let t = ts, tA ty (recall that truth assignments are simply subsets of boolean 
variables). We first define a circuit h in GF(S I) as follows, and later "expand" it 
to H(ts , ,  ty). The circuit h consists of r + s sub-paths, denoted by h(v) for each 
v E X U Y. If t(v) = 1, let h'(v) be the path v* --. ~ --. v[B] --* v[B - 1] 
�9 .. ~ v[1] --, v, and define h(v) = h'(v) tA p(v). If t(v) = 0, let h'(v) be the path 
v* ~ v ~ v[1]--+ v[2] --~ . . .  ~ v[B] --. g, and define h(v) = h'(v)tAp(g).  

Note that the last vertex of each sub-path is always connected to v* for any 
v E X U Y, and therefore we can concatenate h(xl)  through h(ys) into a simple 
circuit h. This completes the definition of h. It can be seen that h visits all variable 
digraphs and all clause digraphs to which the corresponding clauses are satisfied by 
t. Now for each clause digraph dj visited by h fewer than three times, we expand 
h by using inter-literal edges so that all vertices in dj are covered; let H(ts, ,  ty) be 
the simple circuit so obtained from h. We can see that if h visits dj, then H(ts , ,  tu) 
visits all vertices of dj. Since at most ea (m + n) clauses Of FM are not satisfied by 
t, h then fails to visit at most e~ ( m + n )  clause digraphs ci 's, and so does H(ts , ,  ty). 
As each ci consists only of one vertex, Case I is proved. 

Case H. Suppose that there exists some tx E 2 X such that k(tz) = 
max~ye2v #[F(t~, su) ] ~< (1 - e2)(m + n). Fix such a tx, and let St~ C_ S be 
consistent with tx. We will show that any simple circuit in GF(St,  ) misses at least 
ez(m + n) vertices. 

By requirement (b), we can find ty E 2 Y such that #[F(tx, ty)] = k(tx) and 
Pr[FD(tx, ty)] = 1. Let h0 be the standard traversal by tz and ty in GF(St ,)  as 
defined in Case I. Then h0 misses ko ) e2(m + n) vertices, all among c/'s. We 
will show in the following that any simple circuit h in GF(St~ ) misses at least as 
many vertices as h0 does. 

Let th be the truth assignment corresponding to h; that is, for all v E X U Y,  
th(v) = 1 if and only if the positive edge for v is in h. Let th,x = th N X ,  and 
th,y = th A Y.  Let 5h be the number of xi E X such that tz(xi) r th,z(xi). We 
claim that for any sy E 2 Y, 

#[F(th,~, Sy)] <. #[F(tx, ty)] + 5h(B + 1). (4) 

To justify the claim, we notice that each X-literal xi or -~xi occurs in at most B + 1 
clauses. So, 

#[F(th,x, Sy)] <~ #[F(t~, Sy)] + 5h(B + 1). 

The claim follows immediately from requirement (b) that#[F(tx, Sv) ] <. #[F(tz, ty)]. 
Now we say that h changes tracks (or, cheats) in a clause digraph dj if h enters 

dj at some v j [0] (or, gJ [0]) but does not leave via vJ [1] (or, respectively, gJ [1]) for 
some literal v (or, respectively, ~v) in Dj, a s  demonstrated in Figure 3. Let 5~ be 
the number of clause digraph dj in which h cheats. We observe that each time h 
cheats, it is able to visit at most B extra clause digraphs before it changes tracks 
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vertices inaccessible to h 
l 
l 

Fig. 3. h changes tracks. 

again or visits a variable digraph. Therefore, the number of clause digraphs ever 
visited by h is 

Ph <<- #[F(th,~,th,y)] + 5~h �9 B. (5) 

Combining (4) and (5), we have 

Yh <. #[F(tx, ty)] + 5h(B + 1) + 5~. B. 

In other words, h fails to visit at least k0 - (Sh + 5~)(B + 1) clause digraphs. 
On the other hand, for each variable z~ such that tx(x~) ~ th,x(Xi), h misses 

B +  1 vertices in the variable digraph forz~ : z~[1],. . . ,  xi[B] and one ofx~ and ~i. 
In addition, each time h cheats in a clause digraph dj, it loses access to at least B + 1 
vertices in dj (see Figure 3). Therefore h misses additional 5h (B + 1) + 5~ (B + 1) 
vertices. Altogether, h misses at least 

+ 1) + + 1) + ko - + + 1) ko 

vertices. Case H is therefore proved. 
To conclude, if mins~2x maxs~c2y #[F(X,Y)] >>, (1 - el)(m + n), then 

Zc(ac) ~> IGFI - ~1(,~ + n); and if mins~e2x max~u~2Y #[F(X,Y)] <~ (1 - 
e2)(m + n),  then Ic(GF) <~ IGFI - e2(m + n). Note that GF is of size O(mB),  
and n = O(m). Therefore, to finish the proof, choosing e3 = e l / c  and e4 = e2/c 
for some c = O(B) suffices. [] 

5. Open Questions 

Many N P-completeness proofs are built on reductions from the famous 3SAT prob- 
lem - it reduces the complex operations of a Turing Machine to simple boolean 
operations. [10] further demonstrated the advantages of having the occurrences of 
the variables bounded by reducing it to many other N P-hard approximation prob- 
lems. It appears that the problem MAX-3SAT2-B might play a similar role in prov- 
ing the nonapproximability of HP-hard functions. We have successfully extended 
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their result to the case of  MAX-3SAT2-B.  An important difference however  needs 

to be pointed out. We observe that the reduction of  [10] f rom MAX-3SAT to M A X -  

3SATz-B successfully preserves the property that the problems have only one-sided 

errors; that is, (fMAX-3SA'r " 1, 1 -- 6) is G-reducible  to (fMAX-3SAT2-B " 1, 1 -- 8'). 
Our  reduction f rom MAX-3SAT2 to MAX-3SAT2-B,  however,  does not preserve 

this property;  we were  only able to show that (fMAX-3SAT2 " 1, 1 -- e) is G-reducible  

to (fMAX-3SAT2-B : 1 -- e l ,  1 -- e2), with el > 0. In other words, we have introduced 
a new error factor  in our reduction. It is an interesting open question whether  the 

one-sided version (fMAX-3SAT2-B " 1, 1 -- 62) is II2P-hard for some E'2 > 0. 
Karger  et aL [8] have proved, using a technique of amplifying the nonap- 

proximabil i ty  factors, that the c-approximation of the longest circuit p rob lem of  
undirected graphs is NP-hard  for all c > 1. A straightforward application of  their 

technique to our case does not seem to work, since our graphs contain alterable 
edges and since our nonapproximabil i ty  result on MAX-3SAT2-B allows two-sided 
errors. Whether  our main result Theorem 14 may  be improved to an arbitrarily large 

gap c is another interesting question. 
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